Study On Optical Communications, Volume. 48, Issue 6, 45(2022)

Transfer Learning Assisted Transmission Quality Evaluation based on Machine Learning

Jia-xin WANG*
Author Affiliations
  • College of Electronic and Optical Engineering ●amp; College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • show less
    References(18)

    [1] Rottondi C, Marino R D, Nava M et al. On the Benefits of Domain Adaptation Techniques for Quality of Transmission Estimation in Optical Networks[J]. Journal of Optical Communications and Networking, 13, A34-A43(2021).

    [2] Yu J, Mo W, Huang Y K et al. Model Transfer of QoT Prediction in Optical Networks based on Artificial Neural Networks[J]. Journal of Optical Communications and Networking, 11, C48-C57(2019).

    [3] Xu Y L, Wang D S, Zhang M et al. Deep Transfer Learning based Multi-Impairment Diagnosis for PAM-4 Optical Communication Systems[C]. 2019 18th International Conference on Optical Communications and Networks (ICOCN), 1-3(2019).

    [4] Liu Y L, Chen X L, Proietti R et al. Evol-TL: Evolutionary Transfer Learning for QoT Estimation in Multi-domain Networks[C], 1-3(2020).

    [5] Aladin S, Tremblay C. Cognitive Tool for Estimating the QoT of New Lightpaths[C], 1-3(2018).

    [6] Carena A. Modeling of the Impact of Nonlinear Propagation Effects in Uncompensated Optical Coherent Transmission Links[J]. Journal of Lightwave Technology, 30, 1524-1539(2012).

    [7] Tremblay C, Allogba S, Aladin S. Machine Learning Techniques for Estimating Quality of Transmission Estimation of Lightpaths[C](2018).

    [8] Tremblay C, Allogba S, Aladin S. Quality of Transmission Estimation and Performance Prediction of Lightpaths Using Machine Learning[C]. 45th European Conference on Optical Communication (ECOC 2019), 1-3(2019).

    [9] Pointurier Y. Design of Low-margin Optical Networks[J]. Journal of Optical Communications and Networking, 9, A9-A17(2017).

    [10] Poggiolini P, Bosco G, Carena A et al. The GN-model of Fiber Non-linear Propagation and Its Applications[J]. Journal of Lightwave Technology, 32, 694-721(2014).

    [11] [M]. 宋能辉, 李娴,译. 机器学习实战:基于机器Scikit_Learn, Keras和Tensorflow(2020).

         Aurélien Géron, Aurélien Géron, 奥雷利安·杰龙[M]. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Second Edition(2020).

    [12] Morais R M, Pedro J. Machine Learning Models for Estimating Quality of Transmission in DWDM Networks[J]. Journal of Optical Communications and Networking, 10, D84-D99(2018).

    [13] Khan I, Bilal M, Curri V. Assessment of Cross-train Machine Learning Techniques for QoT-estimation in Agnostic Optical Networks[J]. OSA Continuum, 3, 2690-2706(2020).

    [14] Khan F N, Fan Q, Lu C et al. An Optical Communication’s Perspective on Machine Learning and Its Applications[J]. Journal of Lightwave Technology, 37, 493-516(2019).

    [15] Zhou Z H[M]. Machine learning(2018).

    [16] [M]. 韩慧昌, 林然, 徐江,译. Python机器学习手册:从数据预处理到深度学习(2018).

         Albon C, Chris Albon, 克里斯阿尔本[M]. Python: Machine Learning with Python Cookbook(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jia-xin WANG. Transfer Learning Assisted Transmission Quality Evaluation based on Machine Learning[J]. Study On Optical Communications, 2022, 48(6): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 7, 2022

    Accepted: --

    Published Online: Feb. 14, 2023

    The Author Email: Jia-xin WANG (1002054577@qq.com)

    DOI:10.13756/j.gtxyj.2022.06.008

    Topics