Study On Optical Communications, Volume. 48, Issue 6, 45(2022)

Transfer Learning Assisted Transmission Quality Evaluation based on Machine Learning

Jia-xin WANG*
Author Affiliations
  • College of Electronic and Optical Engineering ●amp; College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • show less
    Figures & Tables(9)
    The structure diagram of optical fiber link
    The structure diagram of migration and fine-tuning classifier
    The structure diagram of direct migration classifier
    • Table 1. A, B and C link parameter settings

      View table
      View in Article

      Table 1. A, B and C link parameter settings

      参数A参数范围B参数范围C参数范围
      链路长度/km80~7 50090~7 50050~7 000
      跨度长度/km80,100,120,15090,110,130,15050,80,110,140
      调制格式PM-BPSK,PM-QPSK,16QAM,64QAMPM-BPSK,PM-QPSK,16QAM,64QAMPM-BPSK,PM-QPSK,16QAM,64QAM
      数据速率Gbit/s40,50,10040,50,10050,100
      信道发射功率/dBm-10~5-10~6-15~0
    • Table 2. Dataset content

      View table
      View in Article

      Table 2. Dataset content

      总样本数量类别0(优良)类别1(合格)类别2(不合格)
      数据集A32 9918 7224 39119 878
      数据集B20 3757 3182 51210 545
      数据集C20 2156 7242 60310 888
    • Table 3. Multi-classification performances of system B

      View table
      View in Article

      Table 3. Multi-classification performances of system B

       Kappa海明距离准确率F1_macro
      SVM0.885 50.067 60.932 30.879 0
      随机森林0.824 40.103 60.896 40.812 6
      ANN0.880 50.070 50.929 50.872 7
      DNN0.881 10.070 10.929 80.873 5
    • Table 4. Multi-classification performances of system C

      View table
      View in Article

      Table 4. Multi-classification performances of system C

       Kappa海明距离准确率F1_macro
      SVM0.810 30.111 50.888 50.831 4
      随机森林0.632 70.209 10.790 90.675 9
      ANN0.842 20.092 00.908 00.851 6
      DNN0.840 20.093 60.907 40.850 2
    • Table 5. Multi-classification performances of system B

      View table
      View in Article

      Table 5. Multi-classification performances of system B

       Kappa海明距离准确率F1_macro
      SVM0.956 60.025 60.974 30.954 7
      随机森林0.886 90.066 30.933 70.880 6
      ANN0.963 00.021 80.978 20.962 2
      DNN0.970 10.017 60.982 40.968 4
    • Table 6. Multi-classification performances of system C

      View table
      View in Article

      Table 6. Multi-classification performances of system C

       Kappa海明距离准确率F1_macro
      SVM0.953 00.027 50.972 50.954 2
      随机森林0.916 20.048 40.951 60.917 4
      ANN0.961 90.022 20.977 80.961 7
      DNN0.968 20.018 50.981 50.968 3
    Tools

    Get Citation

    Copy Citation Text

    Jia-xin WANG. Transfer Learning Assisted Transmission Quality Evaluation based on Machine Learning[J]. Study On Optical Communications, 2022, 48(6): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 7, 2022

    Accepted: --

    Published Online: Feb. 14, 2023

    The Author Email: Jia-xin WANG (1002054577@qq.com)

    DOI:10.13756/j.gtxyj.2022.06.008

    Topics