Journal of Infrared and Millimeter Waves, Volume. 39, Issue 5, 583(2020)

Research progress of room temperature semiconductor infrared photodetectors

Tian XIE1,2, Xin-Hui YE1,2, Hui XIA2, Ju-Zhu LI2,3, Shuai-Jun ZHANG1,2, Xin-Yang JIANG2,4, Wei-Jie DENG2,4, Wen-Jing WANG2,3, Yu-Ying LI2, Wei-Wei LIU2, Xiang LI1、*, and Tian-Xin LI2、*
Author Affiliations
  • 1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 3Mathematics and Science College, Shanghai Normal University, Shanghai200234, China
  • 4School of Physical Science and Technology, Shanghai Tech University, Shanghai201210, China
  • show less
    References(63)

    [1] Wang P, Xia H, Li Q et al. Sensing Infrared Photons at Room Temperature: From Bulk Materials to Atomic Layers[J]. Small, 15, 1904396(2019).

    [2] Antoni R. History of infrared detectors[J]. Opto-Electronics Review, 20, 279-308(2012).

    [3] Antoni R. Infrared detectors: status and trends[J]. Progress in Quantum Electronics, 27, 59-210(2003).

    [4] Chee L T, Hooman M. Emerging technologies for high performance infrared detectors[J]. Nanophotonics, 7, 169-197,(2018).

    [5] Antoni R. Infrared detectors: an overview[J]. Infrared Physics & Technology, 43, 187-210(2002).

    [6] Potrowski M, Antoni R. HOT infrared photodetectors[J]. Opto-Electronics Review, 21, 239-257(2013).

    [7] Thomas S, James W B. High Performance Focal Plane Arrays for Space Applications[J]. Optics and Photonics News, 19, 22-27(2008).

    [8] Pitrowski M, Antoni R. Performance comparison of barrier detectors and HgCdTe photodiodes[J]. Optical Engineering, 53, 106105(2014).

    [9] William E T. 'Rule 07’ Revisited: Still a Good Heuristic Predictor of p/n HgCdTe Photodiode Performance[J]. Journal of Electronic Material, 39, 1030-1035(2008).

    [10] Machael M, Jon G, Chad W et al. Low dark current InGaAs detector arrays for night vision and astronomy[C], 7298, 72983F(2009).

    [11] Machael M, Andrew H, Jon G et al. InGaAs focal plane arrays for low light level SWIR imaging[C], 8012, 801221(2011).

    [12] Yuan H, Mike M, Zhang J et al. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies[C], 8353, 91-98(2012).

    [13] Yuan Ping, James Chang et al. InGaAs PIN arrays[C]. of SPIE, 9070, 71-76(2014).

    [14] Eric D B, Fabrice G et al. pixel hybrid InGaAs image sensor for night vision[C]. of SPIE, 8353, 835307-512(2012).

    [15] Rouvié A, Coussement J, Huet O et al. InGaAs focal plane array developments and perspectives[C], 9451, 945105(2015).

    [16] Fraenkel R, Berkowicz E, Bykov L et al. High Definition 10μm pitch InGaAs detector with Asynchronous Laser Pulse Detection mode[C], 9819, 981903(2016).

    [18] Zemel A, Gallant M. Current-voltage characteristics of metalorganic chemical vapor deposition InP/InGaAs p-i-n photodiodes: The influence of finite dimensions and heterointerfaces[J]. Journal of Applied Physics, 64, 6552-6561(1988).

    [19] Forrest S R. Performance of In0.53Ga0.47As/InP photodiodes with dark current limited by diffusion generation recombination and tunneling[J]. IEEE Journal of Quantum Electronics, 17, 217-226(1981).

    [20] Mushini P, Huang Wei, Morales Manuel et al. 9819: 98190D-1[C](2016).

    [22] Arslan Y, Oguz F, Besikci C. Extended Short Wavelength Infrared In0.83Ga0.17As Focal Plane Array[J]. IEEE Journal of Quantum Electronics, 50, 957(2014).

    [23] Li X, Gong H M, Fang J X et al. The development of InGaAs short wavelength infrared focal plane arrays with high performance[J]. Infrared Phys.Technol, 80, 112-119(2017).

    [24] Martin H E, Nguyen Hai, Martin C R, resolution High et al. 3 megapixel extended wavelength InGaAs[C], 9451, 945105(2018).

    [25] Johnson S M, Rhiger D R, Rosebeck J P et al. Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors[J]. J. Vac. Sci. Technol. B, 10, 1499-1507(1992).

    [26] Bommena R, Bergeson J, Kodama D et al. High-performance SWIR HgCdTe FPA development on silicon substrates[C], 9070, 907009(2014).

    [27] Park H, Hansel D, Mukhortova A et al. 9974[C]. 99740H-1(2016).

    [28] Zandian M, Farris M, McLevige W et al. Performance of science grade HgCdTe H4RG-15 image sensors[C], 9915, 99150F(2016).

    [29] Yuan H, Zhang Jiawen et al. 10766[C]. 107660J-1, 320×256-30(2018).

    [30] Gravrand O, Mollard L, Boulade O et al. Ultra low dark current CdHgTe FPAs in the SWIR range at CEA and Sofradir[C], 8353, 83530C(2012).

    [31] Priyalal S W. 9854[C]. 98540B(2016).

    [32] Schuster J, DeWames R E, DeCuir E A et al. Heterojunction Depth in p+-on-n eSWIR HgCdTe Infrared Detectors: Generation-Recombination Suppression[C], 9609, 960904(2015).

    [33] Wang X D, Hu W D, Chen X S et al. Dark current simulation of InP/In0.53Ga0.47As/InP p-i-n photodiode[J]. Optical Quantum Electronics, 40, 1261-1266(2008).

    [34] Schaake H F, Kinch M A, Chandra D et al. High-Operating-Temperature MWIR Detector Diodes[J]. J. Electron. Mater., 37, 1401-1405(2008).

    [35] Nguyen B M, Cao Y, Adam J W et al. HOT MWIR detectors on Silicon substrates[C], 10624, 106240Z(2018).

    [36] Alexander S, David Z T, Cory J H et al. Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength[J]. Appl. Phys. Lett, 109(2016).

    [37] Alexander S, Sam A K, Anita F et al. High operating temperature nBn detector with monolithically integrated microlens[J]. Appl. Phys. Lett, 112, 041105(2018).

    [38] David T, Alexander S, Arezou K et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array[J]. Appl. Phys. Lett, 113, 021101(2018).

    [39] Wu D, Dehzangi A, Razeghi M. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett, 115, 0061102(2019).

    [40] Joseph G P, Roger D, Philip P et al. HOT MWIR HgCdTe performance on CZT and alternative substrates[C], 8353, 83532X(2012).

    [41] Tian Z, Hinkey R T, Yang R Q et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers[J]. J. Appl. Phys, 111, 024510(2012).

    [42] Perez J P, Evirgen A, Abautret J et al. 9370[C]. 93700N-1(2015).

    [43] Kerlain A, Brunner A, Samgiao D et al. 4557-4562[J]. . Electron. Mater, 45-9(2016).

    [44] Gazit R, Chen D, Gershon G et al. 11002[C]. 110021W-1(2019).

    [45] Malgorzata K, Artur K, Waldemar G. MOCVD Grown HgCdTe Barrier Structures for HOT Conditions[J]. IEEE Transactions on Electron Devices, 61, 3803-3807(2014).

    [46] Sun Y, Han X, Hao H et al. 320×256 short/mid-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice[J]. Infrared Phys. Technol, 82, 140-143(2017).

    [47] Zhou Y, Chen J X, Xu Z C et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages[J]. Semiconductor Science and Technology, 31, 085005(2016).

    [48] Chen Y J, Chai X L, Xie Z Y et al. High Speed Mid-Infrared Interband Cascade Photodetector Based on InAs/GaSb Type-II Superlattice[J]. Journal of Lightwave Technology(2019).

    [49] Kopytko M, Antoni R. HgCdTe barrier infrared detectors[J]. Prog. Quantum Electron, 47, 1-18(2016).

    [50] Huang W, Li L, Lei L et al. Minority carrier lifetime in mid-wavelength interband cascade infrared photodetectors[J]. Appl. Phys. Lett, 112, 251107(2018).

    [51] Palaferri D, Todorov Y, Bigioli A et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers[J]. Nature, 556, 85-88(2018).

    [52] Velicu S, Grein C H, Emelie P Y et al. MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements[J]. J. Electron. Mater, 39, 873-881(2010).

    [53] Lei L, Li L, Ye H et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. J. Appl. Phys, 120, 193102(2016).

    [54] Michalczewski K, Pitrowski M, Wu C H et al. Demonstration of HOT LWIR T2SL InAs/InAsSb photodetectors grown on GaAs substrate[J]. Infrared Physics & Technology, 95, 222-226(2018).

    [55] Michalczewski K, Keblowski A, Gawron W et al. LWIR HgCdTe barrier photodiode with Auger-suppression[J]. Semicond. Sci. Technol, 31, 035025(2016).

    [57] Giorgetta F R, Baumann E, Graf M et al. Quantum Cascade Detectors[J]. IEEE J. Quantum Electron, 45, 1039-1052(2009).

    [58] Reininger P, Schwarz B, Detz H et al. Diagonal-transition quantum cascade detector[J]. Appl. Phys. Lett, 105, 091108(2014).

    [59] Antoni R, Kopytko M, Pitrowski M. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Appl. Optics, 57, D11-D19(2018).

    [60] Huang W, Rassela S, Li L et al. A unified figure of merit for interband and intersubband cascade devices[J]. Infrared Phys. Technol, 96, 298-301(2019).

    [61] David Z T, Alexander S, Khoshakhlagh A et al. 10177[C]. 101770N-1-10(2017).

    [62] Sharifi H, Roebuck M, Terterian S et al. 10177[C]. 101770U-1-6(2017).

    [63] Delaunay P Y, Nosho B Z, Gurga A R et al. 10177[C]. 101770T-1-12(2017).

    [64] Antoni R, Pitrowski M, Kopytko M. Type-II superlattice photodetectors versus HgCdTe photodiodes[J]. Progress in Quantum Electronics, 68, 100228(2019).

    Tools

    Get Citation

    Copy Citation Text

    Tian XIE, Xin-Hui YE, Hui XIA, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Xiang LI, Tian-Xin LI. Research progress of room temperature semiconductor infrared photodetectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 583

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials and Devices

    Received: Dec. 31, 2019

    Accepted: --

    Published Online: Dec. 29, 2020

    The Author Email: Xiang LI (xiangli@usst.edu.cn), Tian-Xin LI (txli@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2020.05.008

    Topics