Optics and Precision Engineering, Volume. 31, Issue 20, 3021(2023)

Lightweight target detection network for UAV platforms

Dandan HUANG1, Han GAO1, Zhi LIU1,2、*, Lintao YU1, and Huiji WANG1
Author Affiliations
  • 1School of Electronics and In formation Engineering, Changchun University of Science and Technology, Changchun30022, China
  • 2National and Local Joint Engineering Research Center of Space Photoelectric Technology, Changchun University of Science and Technology, Changchun1300, China
  • show less
    References(31)

    [1] WU X, LI W, HONG D F et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey[J]. IEEE Geoscience and Remote Sensing Magazine, 10, 91-124(2022).

    [2] SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 117, 102152(2021).

    [3] [3] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)

    [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [5] [5] 杜达宽, 孙剑峰, 丁源雪, 等. 基于GM-APD激光雷达数据融合的小目标检测[J]. 光学 精密工程, 2023, 31(3): 393-403. doi: 10.37188/OPE.20233103.0393DUD K, SUNJ F, DINGY X, et al. Small object detection based on GM-APD lidar data fusion[J]. Opt. Precision Eng., 2023, 31(3): 393-403.(in Chinese). doi: 10.37188/OPE.20233103.0393

    [6] [6] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 131-145.JIANGB, QUR K, LIY D, et al. Object detection in UAV imagery based on deep learning: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 131-145. (in Chinese)

    [7] [7] 张丽丽, 陈真, 刘雨轩, 等. 基于ZYNQ的Yolo v3-SPP实时目标检测系统[J]. 光学 精密工程, 2023, 31(4): 543-551. doi: 10.37188/ope.20233104.0543ZHANGL L, CHENZ, LIUY X, et al. Yolo v3-SPP real-time target detection system based on ZYNQ[J]. Opt. Precision Eng., 2023, 31(4): 543-551.(in Chinese). doi: 10.37188/ope.20233104.0543

    [8] GONG Y Q, YU X H, DING Y et al. Effective Fusion Factor in FPN for Tiny Object Detection[C], 1159-1167(3).

    [9] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(21).

    [10] LI H, XIONG P, AN J et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint(2018).

    [11] CHEN C Y, LIU M Y, TUZEL O et al. R-CNN for Small Object Detection[M]. Computer Vision - ACCV 2016, 214-230(2017).

    [12] LI J N, LIANG X D, WEI Y C et al. Perceptual Generative Adversarial Networks for Small Object Detection[C], 1951-1959(21).

    [13] DENG L, LI G Q, HAN S et al. Model compression and hardware acceleration for neural networks: a comprehensive survey[J]. Proceedings of the IEEE, 108, 485-532(2020).

    [14] YANG C, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C], 13658-13667(2022).

    [15] [15] 黄海生, 饶雪峰. 面向无人机航拍场景的轻量化目标检测[J]. 计算机系统应用, 2022, 31(12): 159-168.HUANGH S, RAOX F. Lightweight object detection for drone-captured scenarios[J]. Computer Systems & Applications, 2022, 31(12): 159-168.(in Chinese)

    [16] ZHU X K, LYU S C, WANG X et al. TPH-YOLOv5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios[C], 2778-2788(11).

    [18] REZATOFIGHI H, TSOI N, GWAK J et al. Generalized intersection over union: a metric and a loss for bounding box regression[C], 658-666(15).

    [19] ZHENG Z H, WANG P, LIU W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).

    [20] BAE S H. Object detection based on region decomposition and assembly[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8094-8101(2019).

    [22] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 779-788(27).

    [24] [24] 马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学 精密工程, 2020, 28(4)988-995MAL, GONGX T, OUYANGH K. Improvement of Tiny YOLOV3 target detection[J]. Opt. Precision Eng., 2020, 28(4)988-995. (in Chinese)

    [26] [26] 李想, 特日根, 仪锋, 等. 针对全球储油罐检测的TCS-YOLO模型[J]. 光学 精密工程, 2023, 31(2): 246-262. doi: 10.37188/OPE.20233102.0246LIX, TER G, YIF, et al. TCS-YOLO model for global oil storage tank inspection[J]. Opt. Precision Eng., 2023, 31(2): 246-262.(in Chinese). doi: 10.37188/OPE.20233102.0246

    [27] DU D W, ZHU P F, WEN L Y et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C], 213-226(27).

    [28] HAN K, WANG Y H, TIAN Q et al. GhostNet: more features from cheap operations[C], 1577-1586(13).

    [30] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C], 6154-6162(18).

    [31] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(22).

    CLP Journals

    [1] Shizheng SUN, Lingling HE, Shuai ZHENG, Zeyin HE. Improved lightweight garbage detection method for YOLOv8n in complex environments[J]. Optics and Precision Engineering, 2025, 33(12): 1984

    [2] Shizheng SUN, Lingling HE, Shuai ZHENG, Zeyin HE. Improved lightweight garbage detection method for YOLOv8n in complex environments[J]. Optics and Precision Engineering, 2025, 33(12): 1984

    Tools

    Get Citation

    Copy Citation Text

    Dandan HUANG, Han GAO, Zhi LIU, Lintao YU, Huiji WANG. Lightweight target detection network for UAV platforms[J]. Optics and Precision Engineering, 2023, 31(20): 3021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Apr. 24, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: Zhi LIU (liuzhi@cust.edu.cn)

    DOI:10.37188/OPE.20233120.3021

    Topics