Optics and Precision Engineering, Volume. 31, Issue 20, 3021(2023)

Lightweight target detection network for UAV platforms

Dandan HUANG1, Han GAO1, Zhi LIU1,2、*, Lintao YU1, and Huiji WANG1
Author Affiliations
  • 1School of Electronics and In formation Engineering, Changchun University of Science and Technology, Changchun30022, China
  • 2National and Local Joint Engineering Research Center of Space Photoelectric Technology, Changchun University of Science and Technology, Changchun1300, China
  • show less
    Figures & Tables(17)
    YOLOV5's Backbone layer various structural diagrams
    FasterNet network structure
    PConv working principle
    Comparison of convolutional variants
    Improved YOLOV5 model
    C3_FN network structure
    VisDrone 2019 Data set target statistical diagram
    Effect of ultra -parameter on YOLOV5 model
    Object detection schematic diagram of this model
    Exeriment diagram on Jetson Nano
    • Table 1. Setting value of the anchor frame of each detection branch

      View table
      View in Article

      Table 1. Setting value of the anchor frame of each detection branch

      检测分支锚框设定
      P2(1,4), (2,9), (5,6)
      P3(5,13), (10,10), (8,20)
      P4(19,17), (15,31), (34,42)
      P5(30,61), (62,45), (59,119)
    • Table 2. Different detection branches comparison results

      View table
      View in Article

      Table 2. Different detection branches comparison results

      包含的检测分支mAP0.5/%
      P3,P4,P540.8
      P2,P4,P541.2
      P2,P3,P540.7
      P2,P3,P440.8
      P2,P3,P4,P544.7
    • Table 3. Different predictive boundary box comparison results

      View table
      View in Article

      Table 3. Different predictive boundary box comparison results

      总训练轮数预测边界框mAP0.5/%
      50 epochsCIOU39.6
      NWD38.8
      100 epochsCIOU40.8
      NWD41.1
    • Table 4. Different network structure performance comparison

      View table
      View in Article

      Table 4. Different network structure performance comparison

      方法mAP0.5/%Parameters/MFLOPs/GInference time/ms
      C340.844.0180.670.8
      C3_Ghost33.419.663.365.8
      C3_FN40.929.970.836.2
    • Table 5. VisDrone test data set experiment results

      View table
      View in Article

      Table 5. VisDrone test data set experiment results

      方法

      mAP0.5/

      %

      mAP0.5-0.95/

      %

      Inference time/ms
      Light-RCNN2939.523.252.1
      Cascade-RCNN3037.822.5657.3
      RetinaNet3131.620.148.6
      YOLOv5l40.823.976.8
      TPH-YOLOv546.227.555.1
      YOLOv742.123.448.9
      OURS47.628.745.9
    • Table 6. VisDrone test data set discipline experiment

      View table
      View in Article

      Table 6. VisDrone test data set discipline experiment

      方法mAP0.5/%Parameters/MFLOPs/GInference time/ms
      Baseline40.844.0108.476.8
      +P2分支44.748.1186.688.8
      +NWD与IOU混合47.248.1186.689.7
      +C3_FN47.632.8121.645.9
    • Table 7. Comparison of inference time before and after TensorRT acceleration

      View table
      View in Article

      Table 7. Comparison of inference time before and after TensorRT acceleration

      模型加速前平均推理时间加速后平均推理时间
      YOLOv5l563153
      OURS34284
    Tools

    Get Citation

    Copy Citation Text

    Dandan HUANG, Han GAO, Zhi LIU, Lintao YU, Huiji WANG. Lightweight target detection network for UAV platforms[J]. Optics and Precision Engineering, 2023, 31(20): 3021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Apr. 24, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: Zhi LIU (liuzhi@cust.edu.cn)

    DOI:10.37188/OPE.20233120.3021

    Topics