Chinese Journal of Lasers, Volume. 48, Issue 4, 0401008(2021)

Progress and Prospects of Fiber Gas Laser Sources (Ⅰ) :Based on Stimulated Raman Scattering

Zefeng Wang1,2,3、*, Wei Huang1,2, Zhixian Li1,2, Zhiyue Zhou1,2, Yulong Cui1,2, and Hao Li1,3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less
    References(61)

    [1] Minck R W, Terhune R W, Rado W G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4[J]. Applied Physics Letters, 3, 181-184(1963).

    [4] Rabinowitz P, Kaldor A, Brickman R et al. Waveguide H2 Raman laser[J]. Applied Optics, 15, 2005-2006(1976).

    [5] Brasseur J K, Repasky K S, Carlsten J L. Continuous-wave Raman laser in H2[J]. Optics Letters, 23, 367-369(1998).

    [6] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [11] Mangan B J, Farr L, Langford A et al. Low loss (1.7dB/km) hollow core photonic bandgap fiber. [C]∥ Optical Fiber Communication Conference 2004, February 22, 2004, Los Angeles, California, United States. Washington, D.C. :OSA, PD24(2004).

    [12] Roberts P, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).

    [13] Amezcua-Correa R, Broderick N G, Petrovich M N et al. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation[J]. Optics Express, 15, 17577-17586(2007).

    [14] Petrovich M N, Baddela N K, Wheeler N V et al. Development of low loss, wide bandwidth hollow core photonic bandgap fibers. [C]∥Optical Fiber Communication Conference 2013, March 17-21, 2013, Anaheim, California, United States. Washington, D.C.: OSA, OTh1J, 3(2013).

    [19] Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5μm[J]. Optics Express, 19, 1441-1448(2011).

    [23] Bradley T D, Jasion G T, Hayes J R et al. Antiresonant hollow core fibre with 0.65dB/km attenuation across the C and L telecommunication bands. [C]∥45th European Conference on Optical Communication, Septemper 22-26, 2019 ,Dublin, Ireland. New York: IEEE(2019).

    [25] Gérôme F, Jamier R, Auguste J L et al. Simplified hollow-core photonic crystal fiber[J]. Optics Letters, 35, 1157-1159(2010).

    [26] Couny F, Benabid F, Light P S. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 143903(2007).

    [30] Couny F, Mangan B J, Sokolov A V et al. High power 55 watts CW Raman fiber-gas-laser. [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA, CTuM3(2010).

    [32] Gladyshev A V, Kolyadin A N, Kosolapov A F et al. Efficient 1.9μm Raman generation in a hydrogen-filled hollow-core fibre[J]. Quantum Electronics, 45, 807-812(2015).

    [41] Gladyshev A V, Kosolapov A F, Astapovich M S et al. Revolver hollow-core fibers and Raman fiber lasers. [C]∥Optical Fiber Communication Conference 2018, March 11-15,2018 ,San Diego, California, United States. Washington, D.C.: OSA, M2J, 7(2018).

    [42] Astapovich M S, Gladyshev A V, Khudyakov M M et al. 4.4μm Raman generation with an average power above 1 W in silica revolver fibre[J]. Quantum Electronics, 48, 1084-1088(2018).

    [43] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [52] Chen Y B, Wang Z F, Li Z X et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5μm[J]. Optics Express, 25, 20944-20949(2017).

    [53] Li Z X, Huang W, Cui Y L et al. 0.83 W, single-pass, 1.54μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure[J]. Optics Express, 26, 12522-12529(2018).

    [54] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8μm[J]. Optics Letters, 43, 4671-4674(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zefeng Wang, Wei Huang, Zhixian Li, Zhiyue Zhou, Yulong Cui, Hao Li. Progress and Prospects of Fiber Gas Laser Sources (Ⅰ) :Based on Stimulated Raman Scattering[J]. Chinese Journal of Lasers, 2021, 48(4): 0401008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Apr. 22, 2020

    Accepted: Jun. 11, 2020

    Published Online: Jan. 15, 2021

    The Author Email: Wang Zefeng (zefengwang_nudt@163.com)

    DOI:10.3788/CJL202148.0401008

    Topics