Laser Technology, Volume. 49, Issue 3, 328(2025)
Research progress on infrared laser driven extreme ultraviolet lithography source
[1] [1] RASMUSSEN E, WILTHAN B, SIMONDS B. Report from the extreme ultraviolet (EUV) lithography working group meeting: Current state, needs, and path forward[R]. Gaithersburg, USA: National Institute of Standards and Technology, 2023: 3-4.
[2] [2] HUTCHESON G D. Moore's law, lithography, and how optics drive the semiconductor industry[J]. Proceedings of the SPIE, 2018, 10583: 1058303.
[3] [3] YANG D K, WANG D, HUANG Q S,et al. The development of laser-produced plasma EUV light source[J]. Chip, 2022, 1(3): 100019.
[5] [5] FOMENKOV I, SCHAFGANS A, BRANDT D. Laser-produced plasma sources for high-volume-manufacturing EUV lithography[J]. Synchrotron Radiation News, 2019, 32(4): 3-8.
[7] [7] ASML Netherlands B V. Intel and ASML strengthen their collaboration to drive high-na into manufacturing in 2025[EB/OL]. (2022-01-19) [2024-08-06]. https://www.asml.com/en/news/press-releases/2022/intel-and-asml-strengthen-their-collaboration-to-drive-high-na-into-manufacturing-in-2025.
[8] [8] VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 28(8): 083001.
[9] [9] SCHUPP R. Spectral characterization of solid-state laser-driven plasma sources of EUV light[D]. Amsterdam, Netherlands: Vrije Universiteit Amsterdam, 2021: 1-27.
[10] [10] BENSCHOP J, BANINE V, LOK S,et al. Extreme ultraviolet lithography: Status and prospects[J]. Journal of Vacuum Science & Technology, 2008, B26(6): 2204-2207.
[11] [11] ELIEZER S. The interaction of high-power lasers with plasmas[M]. Boca Raton, USA: CRC Press, 2002: 42-46.
[12] [12] BAKSHI V. EUV sources for lithography[M]. Bellingham, USA: SPIE Press, 2006: 343-347.
[13] [13] HUSSEIN A E, DIWAKAR P K, HARILAL S S,et al. The role of laser wavelength on plasma generation and expansion of ablation plumes in air[J]. Journal of Applied Physics, 2013, 113(14): 143305.
[14] [14] COONS R W, HARILAL S S, CAMPOS D,et al. Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas[J]. Journal of Applied Physics, 2010, 108(6): 063306.
[15] [15] TANAKA H, AKINAGA K, TAKAHASHI A,et al. Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma[J]. Proceedings of the SPIE, 2004, 5448: 737-748.
[16] [16] WHITE J, HAYDEN P, DUNNE P,et al. Simplified modeling of 13.5 nm unresolved transition array emission of a Sn plasma and comparison with experiment[J]. Journal of Applied Physics, 2005, 98(11): 113301.
[17] [17] van de KERKHOF M, LIU F, MEEUWISSEN M,et al. High-power EUV lithography: Spectral purity and imaging performance[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2020, 19(3): 033801.
[18] [18] UENO Y, SOMAGNE G, SMITANI A,et al. Enhancement of extreme ultraviolet emission from a CO2 laser-produced Sn plasma using a cavity target[J]. Applied Physics Letters, 2007, 91(23): 251501.
[19] [19] BAKSHI V. EUV lithography[M].2nd ed. Bellingham, USA: SPIE Press, 2018: 114-130.
[20] [20] BRENDAN A. Solid state Tm∶YLF lasers for driving EUV sources[EB/OL]. (2021-10-28) [2024-08-06]. https://www.euvlitho.com/2021/S33.pdf.
[21] [21] LANGER S, SCOTT H, SIDERS C. An optimization study of EUV sources driven by CO2 and thulium lasers[EB/OL]. (2019-07-13) [2024-08-06]. https://www.euvlitho.com/2019/P53.pdf.
[22] [22] FREEMAN J R, HARILAL S S, VERHOFF B,et al. Laser wavelength dependence on angular emission dynamics of Nd∶YAG laser-produced Sn plasmas[J]. Plasma Sources Science and Technology, 2012, 21(5): 055003.
[23] [23] WHITE J, DUNNE P, HAYDEN P,et al. Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength[J]. Applied Physics Letters, 2007, 90(18): 181502.
[24] [24] SCHUPP R, BEHNKE L, SHEIL J,et al. Characterization of 1 and 2 m wavelength laser-produced microdroplet-tin plasma for generating extreme-ultraviolet light[J]. Physical Review Research, 2021, 3(1): 013294.
[25] [25] BEHNKE L, SCHUPP R, BOUZA Z,et al. Extreme ultraviolet light from a tin plasma driven by a 2 m-wavelength laser[J]. Optics Express, 2021, 29(3): 4475-4487.
[26] [26] SIZYUK T, HASSANEIN A. Tuning laser wavelength and pulse duration to improve the conversion efficiency and performance of EUV sources for nanolithography[J]. Physics of Plasmas, 2020, 27(10): 103507.
[27] [27] VERSOLATO O O, SHEIL J, WITTE S,et al. Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (topical review)[J]. Journal of Optics, 2022, 24(5): 054014.
[28] [28] NOWAK K M, OHTA T, SUGANUMA T,et al. CO2 laser drives extreme ultraviolet nano-lithography—second life of mature laser technology[J]. Opto-Electronics Review, 2013, 21(4): 52-61.
[29] [29] BECK R. Fast-axial-flow CO2 laser with integrated turbo-blower[J]. Applied Physics, 1987, B42(4): 233-236.
[30] [30] SCHAFGANS A A, BROWN D J, FOMENKOV I V,et al. Performance optimization of MOPA pre-pulse LPP light source[J]. Proceedings of the SPIE, 2015, 9422: 56-66.
[31] [31] BRANDT D C, PURVIS M, FOMENKOV I,et al. Advances toward high power EUV sources for EUVL scanners for HVM in the next decade and beyond[J]. Proceedings of the SPIE, 2021, 11609: 116091E.
[32] [32] ANTON S. ASML delivers first 2 nm-generation low-NA EUV tool, the twinscan NXE: 3800E[EB/OL]. (2024-03-13) [2024-08-06]. https://www.anandtech.com/show/21297/asml-delivers-first-2nm-generation-low-na-euv-tool-twinscan-3800e.
[33] [33] JOHANNES K. Beam quality of pulsed high power CO2-lasers[EB/OL]. (2018-06-11) [2024-08-06]. https://euvlitho.com/2018/S36.pdf.
[34] [34] NOWAK K M, OHTA T, SUGANUMA T,et al. Spectral characteristics of quantum-cascade laser operating at 10.6 m wavelength for a seed application in laser-produced-plasma extreme UV source[J]. Optics Letters, 2012, 37(22): 4765-4767.
[35] [35] NIIMI G, NAGAI S, HORI T,et al. Update of development progress of the high power LPP-EUV light source using a magnetic field[J]. Proceedings of the SPIE, 2020, 11323: 1132328.
[36] [36] MIZOGUCHI H, TOMURO H, NISHIMURA Y,et al. Update of >300 W high power LPP-EUV source challenge Ⅳ for semiconductor HVM[J]. Proceedings of the SPIE, 2021, 11854: 118540K.
[37] [37] ROY A, HARILAL S S, POLEK M P,et al. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas[J]. Physics of Plasmas, 2014, 21(3): 033109.
[38] [38] VINOKHODOV A Y, KRIVOKORYTOV M S, SIDELNIKOV Y V,et al. High-brightness EUV source based on laser plasma using a liquid-metal droplet target[J]. Quantum Electronics, 2016, 46(5): 473-480.
[39] [39] SCHUPP R, TORRETTI F, MEIJER R A,et al. Efficient generation of extreme ultraviolet light from Nd∶YAG-driven microdroplet-tin plasma[J]. Physical Review Applied, 2019, 12(1): 014010.
[40] [40] YIN L, WANG H, REAGAN B A,et al. Using temporally synthesized laser pulses to enhance the conversion efficiency of Sn plasmas for EUV lithography[J]. IEEE Photonics Journal, 2020, 13(1): 1-15.
[41] [41] MAZUZ H Y, KLISS N, WENGROWICZ J M,et al. Enhancement of Sn plasma EUV emission by double-sided laser illumination[J]. Applied Physics Letters, 2023, 123(20): 204104.
[42] [42] WU Y, WANG X, RAY T,et al. Experimental study of the dynamics and extreme ultraviolet radiation of laser produced colliding Sn plasmas[J]. Physics of Plasmas, 2024, 31(4): 043508.
[43] [43] SIZYUK V, SIZYUK T, HASSANEIN A. Temporal pre-pulse shaping in dual pulse laser produced plasma for the optimization of the EUV source in tin microdroplet system[J]. Journal of Applied Physics, 2024, 135(9): 093101.
[44] [44] MEIJER R A, STODOLNA A S, EIKEMA K S E,et al. High-energy Nd∶YAG laser system with arbitrary sub-nanosecond pulse shaping capability[J]. Optics Letters, 2017, 42(14): 2758-2761.
[45] [45] VERSOLATO O. Towards solid-state-laser-driven plasma sources of EUV light: An update on ARCNL's source research program[EB/OL]. (2020-07-10) [2024-08-06]. https://www.euvlitho.com/2021/P45.pdf.
[46] [46] SCHUPP R, BEHNKE L, BOUZA Z,et al. Characterization of angularly resolved EUV emission from 2 m-wavelength laser-driven Sn plasmas using preformed liquid disk targets[J]. Journal of Physics, 2021, D54(36): 365103.
[47] [47] YUAN Y, MA Y Y, WANG W P,et al. Enhancing the conversion efficiency of extreme ultraviolet light sources using a 2 m wavelength laser[J]. Plasma Physics and Controlled Fusion, 2021, 64(2): 025001.
[48] [48] MOSTAFA Y, BEHNKE L, ENGELS D J,et al. Production of 13.5 nm light with 5% conversion efficiency from 2 m laser-driven tin microdroplet plasma[J]. Applied Physics Letters, 2023, 123(23): 234101.
[49] [49] BEHNKE L, SALUMBIDES E J, GRITZ G,et al. High-energy parametric oscillator and amplifier pulsed light source at 2 m[J]. Optics Express, 2023, 31(15): 24142-24156.
[50] [50] SHI Z Y, YUAN Y, WANG W P,et al. Enhanced extreme ultravio-let conversion efficiency of a 2 m laser-driven preformed tin-droplet target using short picosecond pre-pulses[J]. Physics of Plasmas, 2023, 30(4): 043107.
[51] [51] SISTRUNK E, ALESSI D A, BAYRAMIAN A,et al. Laser technology development for high peak power lasers achieving kilowatt average power and beyond[J]. Proceedings of the SPIE, 2019, 11034: 1103407.
[52] [52] TAMER I, REAGAN B A, GALVIN T,et al. Demonstration of a compact, multi-joule, diode-pumped Tm∶YLF laser[J]. Optics Letters, 2021, 46(20): 5096-5099.
[53] [53] TAMER I, REAGAN B A, GALVIN T,et al. 1 GW peak power and 100 J pulsed operation of a diode-pumped Tm∶YLF laser[J]. Optics Express, 2022, 30(26): 46336-46343.
Get Citation
Copy Citation Text
LYU Tianhao, SONG Yanjie, ZONG Nan, ZHANG Shenjin, BO Yong, PENG Qinjun. Research progress on infrared laser driven extreme ultraviolet lithography source[J]. Laser Technology, 2025, 49(3): 328
Category:
Received: Jun. 12, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: ZONG Nan (zongnan@mail.ipc.ac)