Acta Optica Sinica, Volume. 45, Issue 12, 1228011(2025)
Aerosol Optical Depth Retrieval Based on Neural Network Model Using Particulate Observing Scanning Polarimeter Data
[4] Jin S K, Ma Y Y, Wang Z T et al. Retrievals and performance assessment of global marine aerosol optical properties from DPC/GRASP[J]. Journal of Atmospheric and Environmental Optics, 19, 680-697(2024).
[5] Li Z Q, Hou W Z, Qiu Z W et al. Preliminary on-orbit performance test of the first polarimetric synchronization monitoring atmospheric corrector (SMAC) on-board high-spatial resolution satellite Gao Fen Duo Mo (GFDM)[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4104014(2020).
[7] Dong H, Liu Z H, Zhao X X et al. On-orbit SNR evaluation of polarized scanning atmospheric corrector onboard HJ-2 satellites[J]. Acta Optica Sinica, 42, 2401005(2022).
[8] Yang J X, Jia L. Retrieval of soil and vegetation component temperatures based on dual-anglular AATSR remote sensing data[J]. Remote Sensing Technology and Application, 29, 247-257(2014).
[22] Sun X H, Sun L, Jia C et al. Aerosol retrieval using deep learning and radiative transfer model[J]. Acta Optica Sinica, 43, 2401006(2023).
Get Citation
Copy Citation Text
Chenyu Yang, Xiao Liu, Honglian Huang, Zhuoyi Chen, Rufang Ti, Xiaobing Sun. Aerosol Optical Depth Retrieval Based on Neural Network Model Using Particulate Observing Scanning Polarimeter Data[J]. Acta Optica Sinica, 2025, 45(12): 1228011
Category: Remote Sensing and Sensors
Received: Jan. 4, 2025
Accepted: Mar. 10, 2025
Published Online: Jun. 24, 2025
The Author Email: Honglian Huang (hlhuang@aiofm.ac.cn)
CSTR:32393.14.AOS250438