Acta Optica Sinica, Volume. 45, Issue 12, 1228011(2025)

Aerosol Optical Depth Retrieval Based on Neural Network Model Using Particulate Observing Scanning Polarimeter Data

Chenyu Yang1,2, Xiao Liu1, Honglian Huang1、*, Zhuoyi Chen3, Rufang Ti1, and Xiaobing Sun1
Author Affiliations
  • 1Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2University of Science and Technology of China, Hefei 230026, Anhui , China
  • 3China Academy of Space Technology, Beijing 100094, China
  • show less
    Figures & Tables(13)
    Neural network structure for aerosol inversion
    Sensitivity analysis of different parameters
    Neural network training process
    Comparison of AOD inversion results of POSP with AERONET products
    Comparisons of AOD inversion results of POSP with AERONET products on typical regions. (a) Beijing region; (b) Baotou region; (c) Taiwan region; (d) Hong Kong region
    Comparison of AOD inversion results of POSP and MODIS products in Beijing-Tianjin-Hebei region on June 10th, 2024. (a) POSP AOD; (b) MODIS AOD; (c) scatterplot comparing POSP AOD and MODIS AOD
    Comparison of AOD inversion results of POSP and MODIS products in Hefei region on January 12th, 2024. (a) POSP AOD; (b) MODIS AOD; (c) scatterplot comparing POSP AOD and MODIS AOD
    Comparison of AOD inversion results of POSP and MODIS products in Taiwan region on February 14th, 2024. (a) POSP AOD; (b) MODIS AOD; (c) scatterplot comparing POSP AOD and MODIS AOD
    • Table 1. Specifications of the POSP sensor onboard GF5-02 satellite

      View table

      Table 1. Specifications of the POSP sensor onboard GF5-02 satellite

      Band numberCentral wavelength /nmSpectral bandwidth/nmSNRUsage
      1380±320±3333.04
      2410±320±3967.61
      3443±320±31517.65
      4490±320±31599.73
      5670±520±32029.47
      6865±540±52927.03
      71380±540±53585.42
      81610±1560±103914.96
      92250±1580±10482.55
    • Table 2. AERONET site data for training and validation

      View table

      Table 2. AERONET site data for training and validation

      AERONET siteLongitudeLatitudeDate range
      Beijing116.38139.9772021-11—2022-11
      AOE_Baotou109.62940.8522021-11—2022-11
      Hefei117.16231.9052021-11—2022-11
      Chen-Kung_Univ120.20522.9932021-11—2022-11
      XiangHe116.96239.7542021-11—2022-11
      Hong_Kong_PolyU114.18022.3032021-11—2022-11
      TASA_Taiwan121.00124.7842021-11—2022-11
      Taipei_CWB121.53825.0152021-11—2022-11
    • Table 3. Aerosol model parameters

      View table

      Table 3. Aerosol model parameters

      Aerosol typeFMFVFMFrefff /μmreffc /μmvefff /μmveffc /μmmrmi
      Urban-industrial and mixed0.5200.7800.122.720.430.631.470.0140
      Biomass burning0.5700.7620.123.220.400.731.510.0210
      Desert dust and oceanic0.0330.6740.121.900.490.631.480.0025
    • Table 4. Simulation parameters

      View table

      Table 4. Simulation parameters

      ParameterValueNumber
      SZA /(°)0, 10, 20, 30, 40, 50, 607
      VZA /(°)0, 8, 16, 24, 32, 40, 48, 568
      RAA /(°)0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 16815
      AOD 5500, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.6, 3.012
      ALH /m1000, 2000, 30003
      Sr0, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.6012
    • Table 5. Data used for inversion validation

      View table

      Table 5. Data used for inversion validation

      Longitude rangeLatitude rangeDate
      114‒12037‒422024-06-10
      115‒11929‒332024-01-12
      120‒12222‒25.52024-02-14
    Tools

    Get Citation

    Copy Citation Text

    Chenyu Yang, Xiao Liu, Honglian Huang, Zhuoyi Chen, Rufang Ti, Xiaobing Sun. Aerosol Optical Depth Retrieval Based on Neural Network Model Using Particulate Observing Scanning Polarimeter Data[J]. Acta Optica Sinica, 2025, 45(12): 1228011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 4, 2025

    Accepted: Mar. 10, 2025

    Published Online: Jun. 24, 2025

    The Author Email: Honglian Huang (hlhuang@aiofm.ac.cn)

    DOI:10.3788/AOS250438

    CSTR:32393.14.AOS250438

    Topics