Journal of Synthetic Crystals, Volume. 49, Issue 11, 2128(2020)
Progress in Homoepitaxial Growth of 4HSiC Semiconductor
[1] [1] Matsunami H, Kimoto T. Stepcontrolled epitaxial growth of SiC: High quality homoepitaxy[J]. Mater Sci Eng R,1997,20(3):125166.
[2] [2] Infineon Inc. [https://www.infineon.com/cms/cn/product/power/mosfet/500v900vcoolmosnchannelpowermosfet/600vcoolmosnchannelpowermosfet/sps02n60c3/].
[3] [3] Cree Inc. [https://www.cree.com/newsevents/news/article/creesnewzfetsiliconcarbidemosfetdeliverssuperiorenergyefficiencytoanexpandinglistofpowerapplications].
[4] [4] Nishizawa S, Pons M. Growth and doping modeling of SiCCVD in a horizontal hotwall reactor[J]. Chem Vap Deposition, 2006,12(89):516522.
[5] [5] Verma A R, Krishna P. Polymorphism and polytypism in crystals[M]. New York: Wiley,1966.
[6] [6] Kimoto T, Cooper J A. Fundamentals of Silicon Carbide Technology[M]. Singapore:Wiley,2014.
[7] [7] Kuroda N, Shibahara K, Yoo W S, et al. Step controlled VPE growth of SiC single crystals at low temperatures[M]. Tokyo:Extended Abstract 19th Conference on Solid State Devices and Materials: 1987.
[8] [8] Ueda T, Nishino H, Matsunami H. Crystal growth of SiC by stepcontrolled epitaxy[J]. J Cryst Growth,1990,104(3):695700.
[9] [9] Kong H, Kim H J, Edmond J A, et al. Growth, doping, device development and characterization of CVD betaSiC epilayers on Si(100) and alphaSiC(0001)[J]. Mater Res Soc Symp Proc, 1987, 97: 233.
[10] [10] Kong H S, Glass J T, Davis R F. Chemical vapor deposition and characterization of 6HSiC thin films on offaxis 6HSiC substrates[J]. Journal of Applied Physics,1988,64(5): 26722679.
[11] [11] Troffer T, Schadt M, Frank T, et al. Doping of SiC by implantation of boron and aluminum[J]. Physica Status Solidi,2015,162(1): 277298.
[12] [12] Sugiyama N, Okamoto A, Tani T. Growth orientation dependence of dopant incorporation in bulk SiC single crystals[M]. International Conference on Silicon Carbide and Related Materials, 1996, 142: 489.
[13] [13] Larkin D J, Neudeck P G, Powell J A, et al. Sitecompetition epitaxy for superior silicon carbide electronics[J]. Appl Phys Lett,1994, 65: 1659.
[14] [14] Kimoto T, Feng G, Hiyoshi T, et al. Defect control in growth and processing of 4HSiC for power device applications[J]. Mater Sci For, 2010, 645648: 645650.
[15] [15] Kimoto T. Material science and device physics in SiC technology for highvoltage power devices[J]. Jpn J Appl Phys,2015,54: 040103.
[16] [16] Tsuchida H, Kamata I, Nagano M. Formation of basal plane Franktype faults in 4HSiC epitaxial growth[J]. Journal of Crystal Growth, 2008, 310(4): 757765.
[17] [17] Ha S, Mieszkowski P, Skowronski M, et al. Dislocation conversion in 4H silicon carbide epitaxy[J]. J Cryst Growth,2002, 244: 257.
[18] [18] Jacobson H, Bergman J P, Hallin C, et al. Properties and origins of different stacking faults that cause degradation in SiC PiN diodes[J]. Journal of Applied Physics,2004, 95(3): 14851488.
[19] [19] Skowronski M, Ha S. Degradation of hexagonal siliconcarbidebased bipolar devices[J]. J Appl Phys, 2006, 99(1): 011101.
[20] [20] Zhang Z, Sudarshan T S. Basal plane dislocationfree epitaxy of silicon carbide[J]. Applied Physics Letters, 2005, 87(15): 299.
[21] [21] Tsuchida H, Kamata I, Miyanagi T, et al. Comparison of propagation and nucleation of basal plane dislocations in 4HSiC(000-1) and (0001) epitaxy[J]. Mater Sci Forum, 2006, 527529: 231234.
[22] [22] Stahlbush R E, Vanmil B L, MyersWard R L, et al. Basal plane dislocation reduction in 4HSiC epitaxy by growth interruptions[J]. Appl Phys Lett, 2009, 94(3): 041916.
[23] [23] Feng G, Suda J, Kimoto T. Triple Shockley type stacking faults in 4HSiC epilayers[J]. Appl Phys Lett, 2009, 94: 091910.
[24] [24] Feng G, Suda J, Kimoto T. Characterization of stacking faults in 4HSiC epilayers by roomtemperature microphotoluminescence mapping[J]. Appl Phys Lett, 2008, 92: 221906.
[25] [25] Konstantinov A O, Hallin C, Pecz B, et al. The mechanism for cubic SiC formation on offoriented substrates[J]. J Cryst Growth, 1997, 178: 495504.
[26] [26] Okada T, Kimoto T, Noda H, et al. Correspondence between surface morphological faults and crystallographic defects in 4HSiC homoepitaxial film[J]. Jpn J Appl Phys, 2002, 1(41): 63206326.
[27] [27] Benamara M, Zhang X, Skowronski M, et al. Structure of the carrot defect in 4HSiC epitaxial layers[J]. Appl Phys Lett,2005, 86(2): 021905.
[28] [28] Kimoto T, Miyamoto N, Matsunami H. Performance limiting surface defects in SiC epitaxial pn junction diodes[J]. IEEE Trans Electr Dev, 1999, 46(3): 471477.
[29] [29] Konishi K, Nakata S, Nakaki Y, et al. Effect of stacking faults in triangular defects on 4HSiC junction barrier schottky diodes[J]. Jpn J Appl Phys, 2013, 52: 04CP05.
[30] [30] Wahab Q, Ellison A, Henry A, et al. Influence of epitaxial growth and substrateinduced defects on the breakdown of 4HSiC schottky diodes[J]. Appl Phys Lett, 2000, 76(19):27252727.
[31] [31] Das H, Sunkari S, Naas H. Nondestructive detection of screw dislocations and the corresponding defects nucleated from them during SiC epitaxial growth and their effect on device characteristics[J]. Journal of Electronic Materials, 2018, 47: 50995104.
[32] [32] Dalibor T, Pensl G, Matsunami H, et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy[J]. Physica Status Solidi, 1997, 62(1):199225.
[33] [33] Hemmingsson C, Son N T, Kordina O, et al. Deep level defects in electronirradiated 4H SiC epitaxial layers[J]. J Appl Phys,1997,81(9):61556159.
[34] [34] Danno K, Kimoto T. Deep level transient spectroscopy on asgrown and electronirradiated ptype 4HSiC epilayers[J]. J Appl Phys,2007, 101(10): 103704.
[35] [35] Storasta L, Tsuchida H, Miyazawa T, et al. Enhanced annealing of the Z1/2 defect in 4HSiC epilayers[J]. J Appl Phys,2008, 103(1): 013705.
[36] [36] Hiyoshi T, Kimoto T. Elimination of the major deep levels in n and pType 4HSiC by twostep thermal treatment[J]. Appl Phys Express, 2009, 2(9): 091101.
[37] [37] Kimoto T, Cooper J A. Fundamentals of silicon carbide technology, growth, characterization, devices and applications[M]. IEEE Press, 2014: 105.
[38] [38] Ito M, Storasta L, Tsuchida H. Development of a high rate 4HSiC epitaxial growth technique achieving largearea uniformity[J]. Appl Phys Express, 2008, 600603(1): 111114.
[39] [39] Ishida Y, Takahashi T, Okumura H, et al. Development of a practical highrate CVD system[J]. Mater Sci Forum, 2008, 600603: 119122.
[40] [40] Leone S, Mauceri M, Pistone G, et al. SiC4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J]. Mater Sci For, 2006, 527529: 179182.
[41] [41] Chowdhury I, Chandrasekhar M V S, Klein P B, et al. High growth rate 4HSiC epitaxial growth using dichlorosilane in a hotwall CVD reactor[J]. J Cryst Growth, 2011, 316(1): 6066.
[42] [42] Macmillan M F, Loboda M J, Chung G Y, et al. Homoepitaxial growth of 4HSiC using a chlorosilane silicon precursor[J]. Mater Sci Forum, 2006, 527529: 175178.
[43] [43] MyersWard R L, Kordina O, Shishkin Z, et al. Increased growth rate in a SiC CVD reactor using HCl as a growth additive[J]. Mater Sci Forum, 2005, 438485: 7376.
[44] [44] Leone S, Pedersen H, Henry A, et al. Improved morphology for epitaxial growth on 4° offaxis 4HSiC substrates[J]. J Cryst Growth, 2009, 311(12): 32653272.
[45] [45] La Via F, Galvagno G, Foti G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chem Vap Deposition, 2006, 12(89): 509515.
[46] [46] Fujihira K, Kimoto T, Matsunami H. Highpurity and highquality 4HSiC grown at high speed by chimneytype vertical hotwall chemical vapor deposition[J]. Appl Phys Lett, 2002, 80(9): 1587.
Get Citation
Copy Citation Text
FENG Gan, SUN Yongqiang, QIAN Weining, CHEN Zhixia. Progress in Homoepitaxial Growth of 4HSiC Semiconductor[J]. Journal of Synthetic Crystals, 2020, 49(11): 2128
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email:
CSTR:32186.14.