Optics and Precision Engineering, Volume. 32, Issue 1, 84(2024)
Prediction of brittle-to-ductile transition depth in ultra-precision grinding YAG crystals
[1] MILISAVLJEVIC I, ZHANG G, WU Y. Solid-state single-crystal growth of YAG and Nd∶YAG by spark plasma sintering[J]. Journal of Materials Science & Technology, 106, 118-127(2022).
[2] FENG Z, MA C Y, ZHANG C G et al. Transparent YAG ceramic/sapphire composite fabricated by pressureless direct thermal diffusion bonding[J]. Journal of the European Ceramic Society, 41, 7845-7851(2021).
[3] NEGRI J R, PIRZIO F, AGNESI A. Jitter investigation of narrow-bandwidth passively Q-switched Nd: YAG unidirectional ring laser[J]. Optics Letters, 44, 3094-3097(2019).
[4] BORDATCHEV E V, HAFIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 73, 35-52(2014).
[5] SACHDEVA A, PICKERING E M, LEE H J. From electrocautery, balloon dilatation, neodymium-doped: yttrium-aluminum-garnet (Nd∶YAG) laser to argon plasma coagulation and cryotherapy[J]. Journal of Thoracic Disease, 7, S363-S379(2015).
[6] MINCUZZI G, PALMA A L, DI CARLO A et al. Laser processing in the manufacture of dye-sensitized and perovskite solar cell technologies[J]. ChemElectroChem, 3, 9-30(2016).
[7] [7] 位超杰, 闫仁鹏, 李旭东, 等. 三维成像激光雷达应用的亚纳秒激光器研究进展[J]. 光学 精密工程, 2021, 29(6):1270-1280. doi: 10.37188/ope.20212906.1270WEICH J, YANR P, LIX D, et al. Research progress of sub-nanosecond lasers for 3D imaging lidar[J]. Opt. Precision Eng., 2021, 29(6):1270-1280.(in Chinese). doi: 10.37188/ope.20212906.1270
[8] ROSS D, YAMAGUCHI H. Nanometer-scale characteristics of polycrystalline YAG ceramic polishing[J]. CIRP Annals, 67, 349-352(2018).
[9] MCKAY J, BAI T Y, GOORSKY M S. Chemical mechanical polishing and direct bonding of YAG[J]. ECS Transactions, 86, 217-222(2018).
[10] PEI Z J, FISHER G R, LIU J. Grinding of silicon wafers: a review from historical perspectives[J]. International Journal of Machine Tools and Manufacture, 48, 1297-1307(2008).
[11] [11] 刘宁, 朱永伟, 李学, 等. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7):80-91. doi: 10.11896/cldb.21060121LIUN, ZHUY W, LIX, et al. Research progress of material removal mechanism in plane lapping and polishing of hard-brittle materials[J]. Materials Review, 2022, 36(7):80-91.(in Chinese). doi: 10.11896/cldb.21060121
[12] [12] 袁巨龙, 王志伟, 文东辉, 等. 超精密加工现状综述[J]. 机械工程学报, 2007, 43(1):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006YUANJ L, WANGZH W, WEND H, et al. Review of the current situation of ultra-precision machining[J]. Chinese Journal of Mechanical Engineering, 2007, 43(1):35-48.(in Chinese). doi: 10.3321/j.issn:0577-6686.2007.01.006
[13] SUN J L, CHEN P, QIN F et al. Modelling and experimental study of roughness in silicon wafer self-rotating grinding[J]. Precision Engineering, 51, 625-637(2018).
[14] ZHANG C Y, GUO B, ZHAO Q L et al. Ultra-precision grinding of AlON ceramics: surface finish and mechanisms[J]. Journal of the European Ceramic Society, 39, 3668-3676(2019).
[15] JIANG B C, ZHAO D W, LIU Y H et al. Surface figure control in fine rotation grinding process of thick silicon mirror[J]. The International Journal of Advanced Manufacturing Technology, 98, 771-779(2018).
[16] [16] 高尚, 李天润, 郎鸿业, 等. 工件旋转法磨削硅片的亚表面损伤深度预测[J]. 光学 精密工程, 2022, 30(17):2077-2087. doi: 10.37188/OPE.20223017.2077GAOSH, LIT R, LANGH Y, et al. Prediction for subsurface damage depth of silicon wafers in workpiece rotational grinding[J]. Opt. Precision Eng., 2022, 30(17):2077-2087.(in Chinese). doi: 10.37188/OPE.20223017.2077
[17] [17] 李琛. 稀土氧化物激光晶体超精密磨削机理及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.LIC. Study on Ultra-precision Grinding Mechanism and Technology of Rare Earth Oxide Laser Crystal[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
[18] LI C, LI X L, WU Y Q et al. Deformation mechanism and force modelling of the grinding of YAG single crystals[J]. International Journal of Machine Tools and Manufacture, 143, 23-37(2019).
[19] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 113, 184-189(1991).
[20] HUANG H, LAWN B R, COOK R F et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 103, 6096-6100(2020).
[21] ARIF M, ZHANG X Q, RAHMAN M et al. A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials[J]. International Journal of Machine Tools and Manufacture, 64, 114-122(2013).
[22] VENKATACHALAM S, LI X, LIANG S Y. Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials[J]. Journal of Materials Processing Technology, 209, 3306-3319(2009).
[23] LI H G, GAO S, KANG R K et al. The Deformation Pattern of Aluminum Nitride Ceramics Under Nanoscratching[M]. Proceedings of the 7th International Conference on Nanomanufacturing (nanoMan2021), 285-297(2022).
[24] JIANG W, CHENG X W, CAI H et al. The response of yttrium aluminum garnet (YAG) grains and grain boundaries to nanoindentation[J]. Journal of Materials Science, 53, 16198-16206(2018).
[25] LI C, ZHANG F H, WANG X et al. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation[J]. Applied Optics, 57, 3661-3668(2018).
[26] WANG H M, HUANG Z Y, LU Z W et al. Determination of the elastic and plastic deformation behaviors of Yb: Y3Al5O12 transparent ceramic by nanoindentation[J]. Journal of Alloys and Compounds, 682, 35-41(2016).
[27] HUANG Y, ZHANG F, HWANG K C et al. A model of size effects in nano-indentation[J]. Journal of the Mechanics and Physics of Solids, 54, 1668-1686(2006).
[28] PHARR G M, HERBERT E G, GAO Y F. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 40, 271-292(2010).
[29] LI C, ZHANG F H, PIAO Y C. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal[J]. Ceramics International, 45, 15015-15024(2019).
[30] GAO S, LI H G, KANG R K et al. Effect of strain rate on the deformation characteristic of AlN ceramics under scratching[J]. Micromachines, 12, 77(2021).
[31] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 7, 1564-1583(1992).
[32] PATHAK S, KALIDINDI S R. Spherical nanoindentation stress-strain curves[J]. Materials Science and Engineering, 91, 1-36(2015).
[33] LAWN B R, EVANS A G. A model for crack initiation in elastic/plastic indentation fields[J]. Journal of Materials Science, 12, 2195-2199(1977).
[34] MAH T I, PARTHASARATHY T A. Effects of temperature, environment, and orientation on the fracture toughness of single-crystal YAG[J]. Journal of the American Ceramic Society, 80, 2730-2734(1997).
[35] ZHANG Y, KANG R K, GAO S et al. A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel, workpiece characteristics, and grinding parameters[J]. Precision Engineering, 72, 461-468(2021).
[36] YANG M, LI C H, ZHANG Y B et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 122, 55-65(2017).
[37] YIN L, VANCOILLE E Y J, RAMESH K et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining[J]. International Journal of Machine Tools and Manufacture, 44, 607-615(2004).
[38] [38] 马廉洁, 巩亚东, 顾立晨, 等. 可加工微晶玻璃陶瓷磨削表面成形机制[J]. 机械工程学报, 2017, 53(15): 201-207. doi: 10.3901/jme.2017.15.201MAL J, GONGY D, GUL CH, et al. Mechanism of surface forming in grinding machinable glass ceramics[J]. Journal of Mechanical Engineering, 2017, 53(15): 201-207.(in Chinese). doi: 10.3901/jme.2017.15.201
Get Citation
Copy Citation Text
Mengcan AO, Jinxing HUANG, Yuxian ZENG, Yueqin WU, Renke KANG, Shang GAO. Prediction of brittle-to-ductile transition depth in ultra-precision grinding YAG crystals[J]. Optics and Precision Engineering, 2024, 32(1): 84
Category:
Received: Sep. 14, 2023
Accepted: --
Published Online: Jan. 23, 2024
The Author Email: Shang GAO (gaoshang@dlut.edu.cn)