Chinese Optics, Volume. 15, Issue 6, 1302(2022)

Wide-field-of-view and high-resolution HiLo optical sectioning microscopy system

Song LANG1,2, Yan-wei ZHANG1,2, Han-qing ZHENG2, Lin-yu XU2, Lu-han WANG1,2, and Yan GONG1,2、*
Author Affiliations
  • 1Division of Life Sciences and Medicine,  School of Biomedical Engineering (Suzhou) University of Science and Technology of China, Suzhou 215163, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
  • show less
    References(26)

    [1] LUO Q M. Brainsmatics—bridging the brain science and brain-inspired artificial intelligence[J]. Scientia Sinica Vitae, 47, 1015-1024(2017).

    [2] QU L, LI Y, XIE P, et al. Cross-modal coherent registration of whole mouse brains[J]. Nature Methods, 19, 111-118(2022).

    [3] [3] YU W, KANG L, TSANG V T C, et al.. Threedimensional multicol subcellular imaging by fast serial sectioning tomography f centimeterscale specimens[J]. Bixiv, 2021,doi: 10.11012021.11.11.468237.

    [4] BERTELS S, JAGGY M, RICHTER B, et al. Geometrically defined environments direct cell division rate and subcellular YAP localization in single mouse embryonic stem cells[J]. Scientific Reports, 11, 9269(2021).

    [5] WU J M, LU ZH, JIANG D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 184, 3318-3332.e17(2021).

    [6] HUGONNET H, KIM Y W, LEE M, et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 3, 026004(2021).

    [7] LI A N, GONG H, ZHANG B, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J]. Science, 330, 1404-1408(2010).

    [8] ZHANG Y, KANG L, YU W T, et al. Three-dimensional label-free histological imaging of whole organs by microtomy-assisted autofluorescence tomography[J]. iScience, 25, 103721(2022).

    [9] TSAI P S, MATEO C, FIELD J J, et al. Ultra-large field-of-view two-photon microscopy[J]. Optics Express, 23, 13833-13847(2015).

    [10] ZHONG Q Y, JIANG CH Y, ZHANG D J, et al. High-throughput optical sectioning via line-scanning imaging with digital structured modulation[J]. Optics Letters, 46, 504-507(2021).

    [11] ZHENG G A, HORSTMEYER R, YANG CH H. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [12] ZHENG G A, SHEN CH, JIANG SH W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).

    [13] FAN J T, SUO J L, WU J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).

    [14] MCCONNELL G, TRÄGÅRDH J, AMOR R, et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout[J]. Elife, 5, e18659(2016).

    [15] MCCONNELL G, AMOS W B. Application of the mesolens for subcellular resolution imaging of intact larval and whole adult Drosophila[J]. Journal of Microscopy, 270, 252-258(2018).

    [16] SOFRONIEW N J, FLICKINGER D, KING J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. Elife, 5, e14472(2016).

    [17] YU CH H, STIRMAN J N, YU Y Y, et al. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry[J]. Nature Communications, 12, 6639(2021).

    [18] [18] ZHANG X Y. Deep learningbased optical sectioning microscopy[D]. Wuhan: Huazhong University of Science Technology, 2020. (in Chinese)

    [19] YANG M K, ZHOU ZH Q, ZHANG J X, et al. MATRIEX imaging: multiarea two-photon real-time in vivo explorer[J]. Light:Science & Applications, 8, 109(2019).

    [20] STELZER E H K, STROBL F, CHANG B J, et al. Light sheet fluorescence microscopy[J]. Nature Reviews Methods Primers, 1, 73(2021).

    [21] PRIYADARSHI A, DULLO F T, WOLFSON D L, et al. A transparent waveguide chip for versatile total internal reflection fluorescence-based microscopy and nanoscopy[J]. Communications Materials, 2, 85(2021).

    [22] NWANESHIUDU A, KUSCHAL C, SAKAMOTO F H, et al. Introduction to confocal microscopy[J]. Journal of Investigative Dermatology, 132, 1-5(2012).

    [23] XU L Y, ZHANG Y W, LANG S, et al. Structured illumination microscopy based on asymmetric three-beam interference[J]. Journal of Innovative Optical Health Sciences, 14, 2050027(2021).

    [24] YIN J, WANG SH F, ZHANG J J, . Theoretical study of wide-field fluorescence microscopy based on dynamic speckle illumination[J]. Acta Physica Sinica, 70, 238701(2021).

    [25] LIM D, CHU K K, MERTZ J. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy[J]. Optics Letters, 33, 1819-1821(2008).

    [26] LIM D, FORD T N, CHU K K, et al. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy[J]. Journal of Biomedical Optics, 16, 016014(2011).

    Tools

    Get Citation

    Copy Citation Text

    Song LANG, Yan-wei ZHANG, Han-qing ZHENG, Lin-yu XU, Lu-han WANG, Yan GONG. Wide-field-of-view and high-resolution HiLo optical sectioning microscopy system[J]. Chinese Optics, 2022, 15(6): 1302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Apr. 29, 2022

    Accepted: Jul. 14, 2022

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0087

    Topics