Photonics Research, Volume. 11, Issue 11, 1802(2023)
Highly robust spatiotemporal wavefront prediction with a mixed graph neural network in adaptive optics
[18] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, W. C. Woo. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), 802-810(2015).
[26] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang. Connecting the dots: multivariate time series forecasting with graph neural networks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 753-763(2020).
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, E. Dumitru, V. Vincent, A. Rabinovich. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9(2015).
Get Citation
Copy Citation Text
Ju Tang, Ji Wu, Jiawei Zhang, Mengmeng Zhang, Zhenbo Ren, Jianglei Di, Liusen Hu, Guodong Liu, Jianlin Zhao, "Highly robust spatiotemporal wavefront prediction with a mixed graph neural network in adaptive optics," Photonics Res. 11, 1802 (2023)
Category: Instrumentation and Measurements
Received: Jun. 13, 2023
Accepted: Aug. 19, 2023
Published Online: Oct. 7, 2023
The Author Email: Zhenbo Ren (zbren@nwpu.edu.cn), Jianglei Di (jiangleidi@gdut.edu.cn), Jianlin Zhao (jlzhao@nwpu.edu.cn)