Remote Sensing Technology and Application, Volume. 40, Issue 4, 761(2025)

Satellite Remote Sensing Observation Research on Energy and Water Cycle on the Qinghai-Tibet Plateau

Jiancheng SHI1, Lingmei JIANG2, Jie CHENG2, Tianjie ZHAO3, Huizhen CUI1, Jinmei PAN1, yonghui LEI3, Chaolei ZHENG3, Luyan JI3, Dabin JI3, Yongqian WANG4, Chuan XIONG5, Tianxing WANG6, Wei FENG6, Yongqiang ZHANG7, Xuanze ZHANG7, Dongqin YOU3, and Letu HUSI3、*
Author Affiliations
  • 1National Space Science Center, Chinese Academy of Sciences, Beijing100190, China
  • 2Faculty of Geographical Science, Beijing Normal University, Beijing100875, China
  • 3Aerospace Information Research Institute , Chinese Academy of Sciences, Beijing100094, China
  • 4College of Resources and Environment, Chengdu University of Information Technology, Chengdu610225, China
  • 5Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu611756, China
  • 6School of Geospatial Engineering and Science,Sun Yat-sen University, Zhuhai519082, China
  • 7Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
  • show less
    References(41)

    [1] [1] LAZHU, YANGK, HOUJ Z, et al. A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau[J]. Science Bulletin, 2021, 66(23): 2358-2361. DOI: 10.1016/j.scib.2021.07.022

    [2] [2] YAOTandong, WANGWeicai, YANGWei, et al. Imbalance of the Asian Water Tower characterized by glacier and snow melt[J]. Climate Change Research, 2024, 20(6): 689-698.

    [3] [3] SHANGH Z, LETUH S, XUR, et al. A hybrid cloud detection and cloud phase classification algorithm using classic threshold-based tests and extra randomized tree model[J]. Remote Sensing of Environment, 2024, 302: 113957. DOI: 10.1016/j.rse.2023.113957

    [4] [4] MAR, LETUH S, YANGK, et al. Estimation of surface shortwave radiation from Himawari-8 satellite data based on a combination of radiative transfer and deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(8):5304-5316. DOI:10.1109/TGRS.2019.2963262

    [5] [5] LETUH S, NAKAJIMAT Y, WANGT X, et al. A new benchmark for surface radiation products over the east Asia–Pacific Region retrieved from the Himawari-8/AHI next-generation geostationary satellite[J]. Bulletin of the American Meteorological Society, 2022, 103(3): E873-E888. DOI: 10.1175/bams-d-20-0148.1

    [6] [6] LETUH S, MAR, NAKAJIMAT Y, et al. Surface solar radiation compositions observed from Himawari-8/9 and Fengyun-4 series[J]. Bulletin of the American Meteorological Society, 2023, 104(10): E1772-E1789. DOI: 10.1175/bams-d-22-0154.1

    [7] [7] WANGT X, WANGG F, SHIC Y, et al. Improved algorithm to derive all-sky longwave downward radiation from space: Application to Fengyun-4A measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4103213. DOI: 10.1109/TGRS.2023.3289058

    [8] [8] DONGS Y,CHENGJ,SHIJ C, et al. A data fusion method for generating hourly seamless land surface temperature from Himawari-8 AHI data[J]. Remote Sensing, 2022, 14(20): 5170. DOI: 10.3390/rs14205170

    [9] [9] XUS,CHENGJ.A new land surface temperature fusion strategy based on cumulative distribution function matching and mul-tiresolution Kalman filtering[J]. Remote Sensing of Environment,2021,254:112256. DOI:10.1016/j.rse. 2020. 112256

    [10] [10] ZHOUS G,CHENGJ,SHIJ C.A physical-based framework for estimating the hourly all-weather land surface temperature by synchronizing geostationary satellite observations and land surface model simulations[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:5003722. DOI:10.1109/TGRS.2022.3222563

    [11] [11] CHENGJ, DONGS Y. A new canopy emissivity model for sparsely vegetated surfaces incorporating soil directional emissivity and topography[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:2004711. DOI:10.1109/TGRS.2024.3401840

    [13] [13] WENJ G, YOUD Q, HANY, et al. Estimating surface BRDF/albedo over rugged terrain using an Extended Multisensor Combined BRDF inversion(EMCBI) model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2503505. DOI: 10.1109/LGRS.2022.3143197

    [14] [14] LEIY H, SHIJ C, XIONGC, et al. Tracking the atmospheric-terrestrial water cycle over the Tibetan Plateau based on ERA5 and GRACE[J].Journal of Climate,2021,34(15): 6459-6471. DOI: 10.1175/jcli-d-20-0692.1

    [15] [15] LEIY H, LIR, LETUH S, et al. Seasonal variations of recharge-storage-runoff process over the Tibetan Plateau[J]. Journal of Hydrometeorology, 2023, 24(10): 1619-1633. DOI: 10.1175/jhm-d-23-0045.1

    [16] [16] LIUH L, TANGS H, HUJ Y, et al. An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations[J]. Remote Sensing of Environment,2017,194:366-378. DOI:10.1016/j.rse.2017.03.031

    [17] [17] MEIR Y, MAOK B, SHIJ C, et al. A novel physics-statistical coupled paradigm for retrieving integrated water vapor content based on artificial intelligence[J]. Remote Sensing, 2023, 15(17): 4250. DOI: 10.3390/rs15174250

    [18] [18] SUNQ X, JID B, LETUH S, et al. A method for estimating high spatial resolution total precipitable water in all-weather condition by fusing satellite near-infrared and microwave observations[J]. Remote Sensing of Environment, 2024, 302: 113952. DOI: 10.1016/j.rse.2023.113952

    [19] [19] ZHANGY Q, KONGD D, GANR, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 2019, 222: 165-182. DOI: 10.1016/j.rse.2018.12.031

    [20] [20] HES Y, ZHANGY Q, MAN, et al. A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020[J]. Earth System Science Data, 2022, 14(12): 5463-5488. DOI: 10.5194/essd-14-5463-2022

    [22] [22] ZENGJ Y, SHIP F, CHENK S, et al. Assessment and error analysis of satellite soil moisture products over the third pole[J]. IEEE Transactions on Geoscience and Remote Sensing,2021, 0:4405418. DOI:10.1109/TGRS.2021.3116078

    [23] [23] ZHAOT J, SHIJ C, ENTEKHABID, et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm[J]. Remote Sensing of Environment, 2021, 257: 112321. DOI: 10.1016/j.rse.2021.112321

    [24] [24] KANGC S, ZHAOT J, SHIJ C, et al. Global soil moisture retrievals from the Chinese FY-3D microwave radiation imager[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4018-4032. DOI:10.1109/TGRS. 2020. 3019408

    [25] [25] ZENGJ Y, CHENK S, CUIC Y, et al. A physically based soil moisture index from passive microwave brightness temperatures for soil moisture variation monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2782-2795. DOI: 10.1109/TGRS.2019.2955542

    [26] [26] WANGJ, JIANGL M, CUIH Z, et al. Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China[J]. Remote Sensing of Environment, 2020, 242: 111734. DOI: 10.1016/j.rse.2020.111734

    [27] [27] WANGJ,JIANGL M,WUS L,et al.Land surface freeze/thaw detection over the Qinghai–Tibet Plateau using FY-3/MWRI data[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:4305017. DOI:10.1109/TGRS.2022.3182359

    [29] [29] ZHENGJ Y, ZHAOT J, LÜH S, et al. Use of a new Tibetan Plateau network for permafrost to characterize satellite-based products errors: An application to soil moisture and freeze/thaw[J]. Remote Sensing of Environment, 2024, 300: 113899. DOI: 10.1016/j.rse.2023.113899

    [30] [30] WANGG X, JIANGL M, XIONGC, et al. Characterization of NDSI variation: Implications for snow cover mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304318. DOI: 10.1109/TGRS.2022.3165986

    [31] [31] PANF B,JIANGL M,WANGG X,et al.MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000-2022)[J].Earth System Science Data,2024,16(5):2501-2523. DOI:10.5194/essd-16-2501-2024

    [32] [32] PANF B, JIANGL M, ZHENGZ J, et al. Retrieval of fractional snow cover over high Mountain Asia using 1 km and 5 km AVHRR/2 with simulated mid-infrared reflective band[J]. Remote Sensing, 2022, 14(14): 3303. DOI: 10.3390/rs14143303

    [33] [33] YANGJ W, JIANGL M, LEMMETYINENJ, et al. Validation of remotely sensed estimates of snow water equivalent using multiple reference datasets from the middle and high latitudes of China[J]. Journal of Hydrology, 2020, 590: 125499. DOI: 10.1016/j.jhydrol.2020.125499

    [35] [35] XIONGC, YANGJ R, PANJ M, et al. Mountain snow depth retrieval from optical and passive microwave remote sensing using machine learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2001705. DOI: 10.1109/LGRS.2022.3226204

    [36] [36] JIL Y, GONGP, WANGJ, et al. Construction of the 500-m resolution daily global surface water change database (2001–2016)[J]. Water Resources Research, 2018, 54(12): 10270-10292. DOI: 10.1029/2018wr023060

    [37] [37] ZHANGS Y, GENGX R, JIL Y, et al. Hyperspectral image unsupervised classification using improved connection center evolution[J]. Infrared Physics & Technology, 2022, 125: 104241. DOI: 10.1016/j.infrared.2022.104241

    [38] [38] ZHONGY L, FENGW, HUMPHREYV, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11(24): 3050. DOI: 10.3390/rs11243050

    [40] [40] WILDM. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming[J]. WIREs Climate Change,2016,7(1):91-107. DOI: 10.1002/wcc.372

    [41] [41] STIGTERE E, LITTM, STEINERJ F, et al. The importance of snow sublimation on a Himalayan glacier[J]. Frontiers in Earth Science,2018,6:108. DOI:10.3389/feart. 2018. 00108

    Tools

    Get Citation

    Copy Citation Text

    Jiancheng SHI, Lingmei JIANG, Jie CHENG, Tianjie ZHAO, Huizhen CUI, Jinmei PAN, yonghui LEI, Chaolei ZHENG, Luyan JI, Dabin JI, Yongqian WANG, Chuan XIONG, Tianxing WANG, Wei FENG, Yongqiang ZHANG, Xuanze ZHANG, Dongqin YOU, Letu HUSI. Satellite Remote Sensing Observation Research on Energy and Water Cycle on the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2025, 40(4): 761

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 10, 2025

    Accepted: --

    Published Online: Aug. 26, 2025

    The Author Email: Letu HUSI (huslt@aircas.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0761

    Topics