Remote Sensing Technology and Application, Volume. 40, Issue 4, 761(2025)
Satellite Remote Sensing Observation Research on Energy and Water Cycle on the Qinghai-Tibet Plateau
The terrain of the “Asian Water Tower” area centered on the Qinghai-Tibet Plateau is complex and the weather is changeable. Especially in the alpine areas, ground observations are scarce. The existing remote sensing observation energy and water cycle elements lack a comprehensive systematic framework, and the accuracy is not high, making it difficult to obtain the understanding of the temporal and spatial distribution and variation characteristics of water balance in the Asian Water Tower area. Relying on the special project of “The Second Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau”, systematic satellite remote sensing observation research on energy and water cycle in the Qinghai-Tibet Plateau was carried out. The development and sharing of satellite remote sensing datasets for 15 key elements of energy and water cycle were completed. The retrieval methods and technologies for each element were improved and developed. A satellite networking observation system for key elements of regional energy balance (6 types) and water cycle (9 types) in the Asian Water tower has been formed (including cloud, surface temperature, emissivity, radiation, albedo, Precipitation- Evapotranspiration, atmospheric water vapor, soil moisture, soil freeze-thaw, snow cover and snow depth, surface water change and terrestrial water storage, etc.), and a systematic remote sensing dataset of energy and water cycle elements with high precision, spatiotemporal continuity and high spatiotemporal resolution has been produced. The systematic analysis based on this dataset indicates that the multi-year average spatial distribution pattern of surface evapotranspiration on the Qinghai-Tibet Plateau is controlled by the precipitation distribution and shows a decreasing trend from southeast to northwest. Evapotranspiration is mainly controlled by moisture conditions in most areas (arid and semi-arid regions), and is dominated by radiation factors only in a few humid areas. The energy parameters that affect the evapotranspiration of the plateau and other factors of the water cycle, such as the downward long-wave radiation on the surface, show an increasing trend, while the surface reflectivity shows a decreasing trend, which has a significant correlation with the decreasing trend of snow coverage. In addition, key parameters of the water cycle such as atmospheric water vapor, soil moisture, lake area and land water storage all show a significant increasing trend, while snow coverage and the annual freezing days of the surface show a decreasing trend. Overall, since 2000, the Qinghai-Tibet Plateau has generally shown a trend of warming and humidification. The dataset provided in this paper is conducive to supporting the combination of remote sensing and models, and promoting the verification and improvement of models for regional climate-land surface and multi-sphere hydrology.
Get Citation
Copy Citation Text
Jiancheng SHI, Lingmei JIANG, Jie CHENG, Tianjie ZHAO, Huizhen CUI, Jinmei PAN, yonghui LEI, Chaolei ZHENG, Luyan JI, Dabin JI, Yongqian WANG, Chuan XIONG, Tianxing WANG, Wei FENG, Yongqiang ZHANG, Xuanze ZHANG, Dongqin YOU, Letu HUSI. Satellite Remote Sensing Observation Research on Energy and Water Cycle on the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2025, 40(4): 761
Category:
Received: Feb. 10, 2025
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Letu HUSI (huslt@aircas.ac.cn)