Chinese Journal of Lasers, Volume. 48, Issue 4, 0401018(2021)
Atmospheric Turbulence Intensity Estimation Based on Deep Convolutional Neural Networks
[4] Wyngaard J C, Izumi Y, Collins S A. Behavior of the refractive-index-structure parameter near the ground[J]. Journal of the Optical Society of America, 61, 1646-1650(1971).
[5] C A. La Rue J C, Champagne F H, et al. Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer[J]. Journal of the Optical Society of America, 65, 1502-1511(1975).
[6] Davidson K L, Schacher G E, Fairall C W et al. Verification of the bulk method for calculating overwater optical turbulence[J]. Applied Optics, 20, 2919-2924(1981).
[11] Qing C, Wu X Q, Li X B et al. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean[J]. Optics Express, 24, 13303-13315(2016).
[12] Wang Y, Basu S. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii[J]. Optics Letters, 41, 2334-2337(2016).
Get Citation
Copy Citation Text
Shengjie Ma, Shiqi Hao, Qingsong Zhao, Yong Wang, Lei Wang. Atmospheric Turbulence Intensity Estimation Based on Deep Convolutional Neural Networks[J]. Chinese Journal of Lasers, 2021, 48(4): 0401018
Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"
Received: Jun. 28, 2020
Accepted: Aug. 10, 2020
Published Online: Feb. 8, 2021
The Author Email: Hao Shiqi (liu_hsq@126.com)