Chinese Journal of Lasers, Volume. 48, Issue 4, 0401018(2021)

Atmospheric Turbulence Intensity Estimation Based on Deep Convolutional Neural Networks

Shengjie Ma1,2, Shiqi Hao1,2、*, Qingsong Zhao1,2, Yong Wang1,2, and Lei Wang1,2
Author Affiliations
  • 1State Key Laboratory of Pulse Power Laser Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2AnHui Province Key Laboratory of Electronic Restriction, Hefei,Anhui 230037, China
  • show less
    Figures & Tables(10)
    Model of multi-layer phase screen
    Spot images of standard Gaussian beam and Gaussian beams under influence of atmospheric turbulence with different intensities. (a) Standard Gaussian beam; (b) Cn2=1.0083×10-16 m-2/3; (c) <
    Structure of VGG16 model
    Scatter plots, frequency distribution histograms, and cumulative probability distribution diagrams of estimation value and actual value of lg Cn2 by VGG16 model. (a1) (a2) (a3) Number of iterations is 1;(b1) (b2) (b3) number of iterations is 10;(c1) (c2) (c3) number of iterations is 20; (d
    Scatter plots,frequency distribution histograms, and cumulative probability distribution diagrams of estimation value and actual value of lg Cn2 by AlexNet model. (a1) (a2) (a3) Number of iterations is 1; (b1)(b2)(b3) number of iterations is 10; (c1)(c2)(c3) number of iterations is 20; (d1
    • Table 1. Simulation parameters

      View table

      Table 1. Simulation parameters

      ParameterSimulation value
      λ /nm632.8
      w0 /cm2
      z /m1000
      Δx/cm0.04
      Number of grid elements768
      Width of phase screen L /m0.5
      Distance of phase screen l /m200
      Cn2 /m-2/31.0×10-16--1.0×10-13
    • Table 2. Four statistics of VGG16 model under different numbers of iterations

      View table

      Table 2. Four statistics of VGG16 model under different numbers of iterations

      Number of iterationsEMAEEMREERMSERxy
      10.08450.16350.109992.32%
      100.04320.08370.057798.16%
      200.02720.05270.034999.24%
      5000.01330.02580.017199.84%
    • Table 3. Standard deviation of estimation results under different turbulence intensities

      View table

      Table 3. Standard deviation of estimation results under different turbulence intensities

      Cn21.0×10-16 m-2/31.0×10-15 m-2/31.0×10-14 m-2/31.0×10-13 m-2/3
      Standard deviation0.0710.09960.14530.2669
    • Table 4. Four statistics of AlexNet model under different numbers of iterations

      View table

      Table 4. Four statistics of AlexNet model under different numbers of iterations

      Number of iterationsEMAEEMREERMSERxy
      10.19020.36820.232559.38%
      100.08660.16770.114994.80%
      200.06910.13380.085697.41%
      5000.02690.05220.034099.27%
    • Table 5. Four statistics of two models under different numbers of iterations

      View table

      Table 5. Four statistics of two models under different numbers of iterations

      Number of iterationsModelEMAEEMREERMSERxy
      1AlexNet0.19020.36820.232559.38%
      VGG160.08450.16350.109992.32%
      10AlexNet0.08660.16770.114994.80%
      VGG160.04320.08370.057798.16%
      20AlexNet0.06910.13380.085697.41%
      VGG160.02720.05270.034999.24%
      500AlexNet0.02690.05220.034099.27%
      VGG160.01330.02580.017199.84%
    Tools

    Get Citation

    Copy Citation Text

    Shengjie Ma, Shiqi Hao, Qingsong Zhao, Yong Wang, Lei Wang. Atmospheric Turbulence Intensity Estimation Based on Deep Convolutional Neural Networks[J]. Chinese Journal of Lasers, 2021, 48(4): 0401018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Jun. 28, 2020

    Accepted: Aug. 10, 2020

    Published Online: Feb. 8, 2021

    The Author Email: Hao Shiqi (liu_hsq@126.com)

    DOI:10.3788/CJL202148.0401018

    Topics