Acta Optica Sinica, Volume. 44, Issue 19, 1925007(2024)

Research Progress on Infrared Low-Emissivity Thermal Photonic Materials (Invited)

Yue Zhang1,2, Xiaowen Zhang1,2, Longnan Li1、*, and Wei Li1、**
Author Affiliations
  • 1The GPL Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(111)

    [2] Fan S H. Thermal photonics and energy applications[J]. Joule, 1, 264-273(2017).

    [5] Chen Z, Zhu L X, Li W et al. Simultaneously and synergistically harvest energy from the Sun and outer space[J]. Joule, 3, 101-110(2019).

    [7] Lin K X, Chen S R, Zeng Y J et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity[J]. Science, 382, 691-697(2023).

    [9] Mesloub A, Ghosh A, Touahmia M et al. Assessment of the overall energy performance of an SPD smart window in a hot desert climate[J]. Energy, 252, 124073(2022).

    [10] Yang X X, Yang Y L, Chen L T et al. A switchable dual-mode film with designed intercalated and hierarchical structures for highly efficient passive radiation cooling and solar heating[J]. Chemical Engineering Journal, 494, 152920(2024).

    [11] Chen X T, Guo S N, Tan S J et al. An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth[J]. Carbon, 213, 118313(2023).

    [12] Wen C Y, Zhao B, Liu Y H et al. Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands[J]. Advanced Functional Materials, 33, 2214223(2023).

    [13] Jelle B P, Kalnæs S E, Gao T. Low-emissivity materials for building applications: a state-of-the-art review and future research perspectives[J]. Energy and Buildings, 96, 329-356(2015).

    [16] Max B, Emil W[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction, 93-98(1970).

    [19] Wang S C, Jiang T Y, Meng Y et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 374, 1501-1504(2021).

    [20] Wu W, Tong L P, Zhou H et al. Combined experimental and DFT study on 2D MoSe2 toward low infrared emissivity[J]. Advanced Functional Materials, 32, 2201906(2022).

    [22] Mandal J, Du S C, Dontigny M et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 28, 1802180(2018).

    [23] Tang K C, Dong K C, Li J C et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 374, 1504-1509(2021).

    [25] Zhang Z M[M]. Nano/microscale heat transfer, 437-471(2007).

    [26] Luo H, Li Q, Du K K et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities[J]. Nano Energy, 65, 103998(2019).

    [27] Zhu Y N, Zhou Y W, Qin B et al. Night-time radiative warming using the atmosphere[J]. Light: Science & Applications, 12, 268(2023).

    [28] Xu Y, Wan G P, Ma L L et al. Indium tin oxide as a dual-band compatible stealth material with low infrared emissivity and strong microwave absorption[J]. Journal of Materials Chemistry C, 11, 1754-1763(2023).

    [29] Jing H H, Wei Y Q, Kang J F et al. An optically transparent flexible metasurface absorber with broadband radar absorption and low infrared emissivity[J]. Journal of Physics D: Applied Physics, 56, 115103(2023).

    [30] Cinali M B, Coşkun Ö D. Optimization of physical properties of sputtered silver films by change of deposition power for low emissivity applications[J]. Journal of Alloys and Compounds, 853, 157073(2021).

    [32] Liang S R, Xu F, Li W X et al. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film[J]. Applied Thermal Engineering, 232, 121074(2023).

    [34] Kang Q L, Li D K, Wang W et al. Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial[J]. Journal of Physics D: Applied Physics, 55, 065103(2022).

    [35] Lu L L, Xu J, Liu Y et al. Effect of substrate bias voltage on infrared characteristics of TiN films[J]. Journal of Electronic Materials, 51, 7267-7274(2022).

    [36] Neamen D A[M]. Semiconductor physics and devices: basic principles, 103-148(2012).

    [37] Zhang Z K, Zhang L P, Ren Z C et al. Multifunctional ultrathin metasurface with a low radar cross section and variable infrared emissivity[J]. ACS Applied Materials & Interfaces, 16, 21109-21117(2024).

    [38] Qin T, Gao X H, Zhang P et al. Implementation of high-performance flexible electrochromic device based on polyaniline/carbon quantum dots[J]. Organic Electronics, 113, 106716(2023).

    [41] Hourquebie P. Infrared switching electroemissive devices based on highly conducting polymers[J]. Thin Solid Films, 352, 243-248(1999).

    [42] Ali Badshah M, Leung E M, Liu P et al. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability[J]. Nature Sustainability, 5, 434-443(2022).

    [43] Zhang W, Shan W H, Qian M D et al. A Mo/Si multilayer film based selective thermal emitter for high-temperature infrared stealth application[J]. Infrared Physics & Technology, 131, 104643(2023).

    [44] Fan Q, Zhang L G, Xing H L et al. Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake[J]. Journal of Materials Science: Materials in Electronics, 31, 3005-3016(2020).

    [45] Zhang W G, Ma Z W, Lü D D et al. An ultra-low infrared emissivity composite coating with outstanding mechanical properties and salt water resistance[J]. Infrared Physics & Technology, 126, 104351(2022).

    [46] Chen L P, Ren Z Y, Liu X M et al. Infrared-visible compatible stealth based on Al-SiO2 nanoparticle composite film[J]. Optics Communications, 482, 126608(2021).

    [47] Fu S Q, Liang Z D, Qian X et al. Ultrawide spectra camouflage coatings from metallic flake powder[J]. ACS Applied Materials & Interfaces, 16, 27627-27639(2024).

    [48] Fang S Q, Xu N, Zhou L et al. Self-assembled skin-like metamaterials for dual-band camouflage[J]. Science Advances, 10, eadl1896(2024).

    [49] Li W, Shi Y, Chen Z et al. Photonic thermal management of coloured objects[J]. Nature Communications, 9, 4240(2018).

    [50] Chen Y J, Mandal J, Li W X et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 6, eaaz5413(2020).

    [51] Peng Y C, Fan L L, Jin W L et al. Coloured low-emissivity films for building envelopes for year-round energy savings[J]. Nature Sustainability, 5, 339-347(2022).

    [52] Peng Y C, Lai J C, Xiao X et al. Colorful low-emissivity paints for space heating and cooling energy savings[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, e2300856120(2023).

    [53] Ma D X, Chen L, Fan F et al. Solar light management enabled by dual-responsive smart window[J]. ACS Applied Materials & Interfaces, 14, 56065-56073(2022).

    [54] Yeh T H, Lee C C, Shih C J et al. Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes[J]. Organic Electronics, 59, 266-271(2018).

    [55] Lee S, Guo L J. Bioinspired toughening mechanisms in a multilayer transparent conductor structure[J]. ACS Applied Materials & Interfaces, 14, 7440-7449(2022).

    [56] Krimm S, Liang C Y, Sutherland G B B M. Infrared spectra of high polymers. II. polyethylene[J]. The Journal of Chemical Physics, 25, 549-562(1956).

    [57] Hsu P C, Liu X G, Liu C et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 15, 365-371(2015).

    [61] Afre R A, Sharma N, Sharon M et al. Transparent conducting oxide films for various applications: a review[J]. Reviews on Advanced Materials Science, 53, 79-89(2018).

    [62] Sun K W, Zhou W C, Tang X F et al. Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature[J]. Infrared Physics & Technology, 78, 156-161(2016).

    [63] Chang S C, Chan H T. Effect of nitrogen flow in hydrogen/nitrogen plasma annealing on aluminum-doped zinc oxide/tin-doped indium oxide bilayer films applied in low emissivity glass[J]. Crystals, 9, 310(2019).

    [64] Chu X H, Tao H Z, Liu Y K et al. VO2/AZO double-layer films with thermochromism and low-emissivity for smart window applications[J]. Journal of Non-Crystalline Solids, 383, 121-125(2014).

    [65] Bhoomanee C, Ruankham P, Choopun S et al. Diffusion-induced doping effects of Ga in ZnO/Ga/ZnO and AZO/Ga/AZO multilayer thin films[J]. Applied Surface Science, 474, 127-134(2019).

    [66] Song S M, Yang T L, Lv M S et al. Effect of Cu layer thickness on the structural, optical and electrical properties of AZO/Cu/AZO tri-layer films[J]. Vacuum, 85, 39-44(2010).

    [67] Dang T V, Pammi S V N, Choi J et al. Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 163, 58-65(2017).

    [68] Bianchi C, Marques A C, da Silva R C et al. Near infrared photothermoelectric effect in transparent AZO/ITO/Ag/ITO thin films[J]. Scientific Reports, 11, 24313(2021).

    [69] Wang L, Dong J, Zhang W J et al. Inverse design for laser-compatible infrared camouflage metasurface enabled by physics-driven neural network and genetic algorithm[J]. Optical Materials, 153, 115639(2024).

    [70] Liu Q, Wang P L, Zhang W et al. Multifunctional wood-derived cellulose/Ti3C2Tx composite films enhanced by densification strategy for electromagnetic shielding, Joule/solar heating, and thermal camouflage[J]. Chemical Engineering Journal, 493, 152696(2024).

    [71] Shi M K, Shen M M, Guo X Y et al. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating[J]. ACS Nano, 15, 11396-11405(2021).

    [72] Ma Z L, Jiang R C, Jing J Y et al. Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding[J]. Nano-Micro Letters, 16, 223(2024).

    [73] Hassan T, Iqbal A, Yoo B et al. Multifunctional MXene/carbon nanotube Janus film for electromagnetic shielding and infrared shielding/detection in harsh environments[J]. Nano-Micro Letters, 16, 216(2024).

    [74] Zhang M, Yang G, Zhang L et al. Application of ZrB2 thin film as a low emissivity film at high temperature[J]. Applied Surface Science, 527, 146763(2020).

    [75] Yang X, Xuan L X, Men W W et al. Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range[J]. Chemical Engineering Journal, 491, 151862(2024).

    [76] Zhang F Y, Zhou Y M, Sun Y Q et al. Preparation and characterization of Chitosan/Konjac glucomannan/CdS nanocomposite film with low infrared emissivity[J]. Materials Research Bulletin, 45, 859-862(2010).

    [77] Chen Z J, Zhou Y M, Zhang T et al. Preparation and characterization of optically active polyacetylene@CdTe quantum dots composites with low infrared emissivity[J]. Journal of Inorganic and Organometallic Polymers and Materials, 24, 591-599(2014).

    [78] Sala-Casanovas M, Krishna A, Yu Z Q et al. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management[J]. Nanoscale and Microscale Thermophysical Engineering, 23, 173-187(2019).

    [79] Zeng S S, Shen K Y, Liu Y et al. Dynamic thermal radiation modulators via mechanically tunable surface emissivity[J]. Materials Today, 45, 44-53(2021).

    [81] Li M Y, Liu D Q, Cheng H F et al. Manipulating metals for adaptive thermal camouflage[J]. Science Advances, 6, eaba3494(2020).

    [82] Roeder M, Beleke A B, Guntow U et al. Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications[J]. Journal of Power Sources, 301, 35-40(2016).

    [83] Li M, Gould T, Su Z et al. Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum[J]. Applied Physics Letters, 115, 073902(2019).

    [85] Yun T G, Park M, Kim D H et al. All-transparent stretchable electrochromic supercapacitor wearable patch device[J]. ACS Nano, 13, 3141-3150(2019).

    [88] Wang S F, Liu M S, Kong L B et al. Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties[J]. Progress in Materials Science, 81, 1-54(2016).

    [89] Dou S L, Zhao J P, Zhang W Y et al. A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances[J]. ACS Applied Materials & Interfaces, 12, 7302-7309(2020).

    [90] Zhao H P, Zhang X Y, He Y B et al. Self-adaptive temperature modulation based on thermal induced phase changing of vanadium dioxide[J]. Acta Optica Sinica, 41, 1523001(2021).

    [91] Chen Y D, Zhao J P, Dou S L et al. Principle and progress of photothermal control of VO2 smart window[J]. Acta Optica Sinica, 44, 1900002(2024).

    [93] Tang K C, Wang X, Dong K C et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition[J]. Advanced Materials, 32, 1907071(2020).

    [94] Jian J, Wang X J, Li L G et al. Continuous tuning of phase transition temperature in VO2 thin films on c-cut sapphire substrates via strain variation[J]. ACS Applied Materials & Interfaces, 9, 5319-5327(2017).

    [96] Gu J, Wang W, Yu D. Temperature control and low infrared emissivity double-shell phase change microcapsules and their application in infrared stealth fabric[J]. Progress in Organic Coatings, 159, 106439(2021).

    [97] Zhang L P, Xia G L, Li X B et al. Fabrication of the infrared variable emissivity electrochromic film based on polyaniline conducting polymer[J]. Synthetic Metals, 248, 88-93(2019).

    [98] Brooke R, Mitraka E, Sardar S et al. Infrared electrochromic conducting polymer devices[J]. Journal of Materials Chemistry C, 5, 5824-5830(2017).

    [99] Kim B, Koh J K, Park J et al. Patternable PEDOT nanofilms with grid electrodes for transparent electrochromic devices targeting thermal camouflage[J]. Nano Convergence, 2, 19(2015).

    [100] Cao C C, Cao X. Research progress of infrared emissivity dynamic modulation intelligent coatings[J]. Surface Technology, 51, 41-57(2022).

    [101] Li Z Q, Chen W. Progress in dynamic emissivity regulation: control methods, material systems, and applications[J]. Materials Chemistry Frontiers, 5, 6315-6332(2021).

    [102] Sun Y, Wang Y Y, Zhang C et al. Flexible mid-infrared radiation modulator with multilayer graphene thin film by ionic liquid gating[J]. ACS Applied Materials & Interfaces, 11, 13538-13544(2019).

    [103] Ergoktas M S, Bakan G, Steiner P et al. Graphene-enabled adaptive infrared textiles[J]. Nano Letters, 20, 5346-5352(2020).

    [105] Juanicó L E. Thermal insulation of roofs by using multiple air gaps separated by insulating layers of low infrared emissivity[J]. Construction and Building Materials, 230, 116931(2020).

    [106] Xu J, Raman A P. Controlling radiative heat flows in interior spaces to improve heating and cooling efficiency[J]. iScience, 24, 102825(2021).

    [107] Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 88, 89-96(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yue Zhang, Xiaowen Zhang, Longnan Li, Wei Li. Research Progress on Infrared Low-Emissivity Thermal Photonic Materials (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Jul. 30, 2024

    Accepted: Sep. 30, 2024

    Published Online: Oct. 13, 2024

    The Author Email: Li Longnan (weili1@ciomp.ac.cn), Li Wei (longnanli@ciomp.ac.cn)

    DOI:10.3788/AOS241378

    CSTR:32393.14.AOS241378

    Topics