High Power Laser and Particle Beams, Volume. 37, Issue 6, 069001(2025)
Research progress of microwave kinetic inductance detector for terahertz astronomical detection
[1] [1] Hey J S. The evolution of radio astronomy[M]. New Yk: Science Histy Publications, 1973.
[5] Rogalski A, Sizov F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 19, 346-404(2011).
[10] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).
[13] He Qing, Li Dong, Luo Siyuan, et a1. Research progress in ultra-wideband Rydberg atomic antenna technology[J]. Journal of Guangxi Normal University (Natural Science Edition), 43, 1-19(2025).
[14] [14] Walker C K. Terahertz astronomy[M]. Boca Raton: CRC Press, 2015.
[21] [21] Brien T L R, Ade P A R, Barry P S, et al. MUSCAT: the MexicoUK submillimetre camera f AsTronomy[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy IX. 2018: 173181.
[22] Austermann J E, Beall J A, Bryan S A et al. Millimeter-wave polarimeters using kinetic inductance detectors for TolTEC and beyond[J]. Journal of Low Temperature Physics, 193, 120-127(2018).
[23] Takekoshi T, Karatsu K, Suzuki J et al. DESHIMA on ASTE: on-sky responsivity calibration of the integrated superconducting spectrometer[J]. Journal of Low Temperature Physics, 199, 231-239(2020).
[24] [24] Baryshev A M, Baselmans J J A, Yates S J C, et al. Large fmat antenna coupled micwave kiic iinductance detect arrays f radioastronomy[C]2014 39th International Conference on Infrared, Millimeter, Terahertz waves (IRMMWTHz). 2014: 1.
[25] [25] Duan Ran, Khaikin V, Lebedev M, et al. Toward Eurasian SubMillimeter Telescopes: the concept of multicol subTHz MKIDarray demo camera MUSICAM its instrumental testing[C]2020 7th AllRussian Microwave Conference (RMC). 2020: 4146.
[26] [26] Isopi G, Cacciotti F, Paiella A, et al. MISTRAL: technical commissioning first Wb photons from the Sardinia Radio Telescope[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy XII. 2024: 116125.
[31] [31] Han Ruonan, Zhang Yaming, Kim Y, et al. 280GHz 860GHz image senss using Schottkybarrier diodes in 0.13 μm digital CMOS[C]2012 IEEE International SolidState Circuits Conference. 2012: 254256.
[32] Otsuji T. Trends in the research of modern terahertz detectors: plasmon detectors[J]. IEEE Transactions on Terahertz Science and Technology, 5, 1110-1120(2015).
[39] Miao W, Zhang W, Zhou K M et al. Investigation of the performance of NbN superconducting HEB mixers of different critical temperatures[J]. IEEE Transactions on Applied Superconductivity, 27, 2200304(2017).
[40] Hijmering R A, Khosropanah P, Ridder M et al. Effect of magnetic fields on TiAu TES bolometers for the SAFARI instrument on the SPICA FIR telescope[J]. Journal of Low Temperature Physics, 167, 242-247(2012).
[43] [43] Gao Jiansong. The physics of superconducting microwave resonats[D]. Pasadena: Califnia Institute of Technology, 2008.
[46] [46] Shi Qing, Li Jing, Zhi Qiang, et al. Terahertz superconducting kiic inductance detects demonstrating photonnoiselimited perfmance intrinsic generationrecombination noise[J]. Science China Physics, Mechanics & Astronomy, 2022, 65: 239511.
[47] Baselmans J J A, Bueno J, Yates S J C et al. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors[J]. Astronomy & Astrophysics, 601, A89(2017).
[49] [49] Barry P S, Shirokoff E, Kovács A, et al. Electromagic design f SuperSpec: a lithographicallypatterned millimetrewave spectrograph[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy VI. 2012.
[50] Karkare K S, Barry P S, Bradford C M et al. Full-array noise performance of deployment-grade SuperSpec mm-wave on-chip spectrometers[J]. Journal of Low Temperature Physics, 199, 849-857(2020).
[52] Taniguchi A, Bakx T J L C, Baselmans J J A et al. DESHIMA 2.0: development of an integrated superconducting spectrometer for science-grade astronomical observations[J]. Journal of Low Temperature Physics, 209, 278-286(2022).
[53] [53] Thomas C N, Blundell R, Glowacka D, et al. Progress on the Cambridge emission line survey (CAMELS)[C]26th International Symposium on Space Terahertz Technology. 2015: M4.
[54] [54] Grimes P K, Asada K, Blundell R, et al. Instrumentation f singledish observations with The Greenl Telescope[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy VII. 2014: 602612.
[55] Cataldo G, Barrentine E M, Bulcha B T et al. Second-generation design of micro-spec: a medium-resolution, submillimeter-wavelength spectrometer-on-a-chip[J]. Journal of Low Temperature Physics, 193, 923-930(2018).
[57] Ade P A R, Anderson C J, Barrentine E M et al. The experiment for cryogenic large-aperture intensity mapping (EXCLAIM)[J]. Journal of Low Temperature Physics, 199, 1027-1037(2020).
[58] Switzer E R, Barrentine E M, Cataldo G et al. Experiment for cryogenic large-aperture intensity mapping: instrument design[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 044004(2021).
[60] Bryan S, Aguirre J, Che G et al. WSPEC: a waveguide filter-bank focal plane array spectrometer for millimeter wave astronomy and cosmology[J]. Journal of Low Temperature Physics, 184, 114-122(2016).
[61] Hubmayr J, Beall J A, Becker D et al. Dual-polarization-sensitive kinetic inductance detectors for balloon-borne sub-millimeter polarimetry[J]. Journal of Low Temperature Physics, 176, 490-496(2014).
[63] [63] Galitzki N, Ade P A R, Angilè F E, et al. The balloonbne large aperture submillimeter telescope f polarimetryBLASTPol: perfmance results from the 2012 Antarctic flight[C]Groundbased Airbne Telescopes V. 2014: 257267.
[64] [64] Gilo N. The balloonbne large aperture submillimeter telescope f polarimetry (BLASTPol): instrument 2010 Science Campaign[D]. University of Pennsylvania, 2013.
[65] [65] Galitzki N, Ade P, Angilè F E, et al. Instrumental perfmance results from testing of the BLASTTNG receiver, submillimeter optics, MKID detect arrays[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy VIII. 2016: 108118.
[67] [67] Brien T L R, Ade P, Barry P S, et al. Perfmance deployment status of MUSCAT: a 1500pixel LEKIDbased mmwave camera f the large millimeter telescope[C]2020 45th International Conference on Infrared, Millimeter, Terahertz Waves (IRMMWTHz). 2020: 1.
[68] Rowe S, Tapia M, Barry P S et al. The MUSCAT readout electronics backend: design and pre-deployment performance[J]. Journal of Low Temperature Physics, 211, 289-301(2023).
[69] Ade P A R, Aghanim N, Arnaud M et al.
[70] Ade P A R, Aghanim N, Arnaud M et al.
[71] Mccarrick H, Jones G, Johnson B R et al. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry[J]. Astronomy & Astrophysics, 610, A45(2018).
[72] de Bernardis P, Ade P A R, Baselmans J J A et al. Exploring cosmic origins with CORE: the instrument[J]. Journal of Cosmology and Astroparticle Physics, 2018, 015(2018).
[73] Johnson B R, Ade P A R, Araujo D et al. The detector system for the stratospheric kinetic inductance polarimeter (SKIP)[J]. Journal of Low Temperature Physics, 176, 741-748(2014).
[74] [74] Monfardini A, Baselmans J, Benoit A, et al. Lumped element kiic inductance detects f space applications[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy VIII. 2016: 142149.
[75] Lee K, Choi J, Génova-Santos R T et al. GroundBIRD: a CMB polarization experiment with MKID arrays[J]. Journal of Low Temperature Physics, 200, 384-391(2020).
[76] Nagasaki T, Choi J, Génova-Santos R T et al. GroundBIRD: observation of CMB polarization with a rapid scanning and MKIDs[J]. Journal of Low Temperature Physics, 193, 1066-1074(2018).
[77] [77] Hui H, Ade P A R, Ahmed Z, et al. BICEP Array: a multifrequency degreescale CMB polarimeter[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy IX. 2018: 7589.
[80] [80] Schlaerth J A, Czakon N G, Day P K, et al. MKID multicol array status results from DemoCam[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy V. 2010: 5969.
[81] Schlaerth J, Vayonakis A, Day P et al. A millimeter and submillimeter kinetic inductance detector camera[J]. Journal of Low Temperature Physics, 151, 684-689(2008).
[82] [82] Glenn J, Day P K, Ferry M, et al. A microwave kiic inductance camera f submillimeter astrophysics[C]Millimeter Submillimeter Detects Instrumentation f Astronomy IV. 2008: 117126.
[83] [83] Golwala S R, Bockstiegel C, Brugger S, et al. Status of MUSIC, the MUltiwavelength submillimeter inductance camera[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy VI. 2012: 3353.
[84] [84] Maloney P R, Czakon N G, Day P K, et al. MUSIC f submillimeter astrophysics[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy V. 2010: 124134.
[85] Schlaerth J A, Czakon N G, Day P K et al. The status of music: a multicolor sub/millimeter MKID instrument[J]. Journal of Low Temperature Physics, 167, 347-353(2012).
[86] Monfardini A, Benoit A, Bideaud A et al. The Néel IRAM KID Arrays (NIKA)[J]. Journal of Low Temperature Physics, 167, 834-839(2012).
[87] Monfardini A, Adam R, Adane A et al. Latest NIKA results and the NIKA-2 project[J]. Journal of Low Temperature Physics, 176, 787-795(2014).
[88] Ritacco A, Macías-Pérez J F, Ponthieu N et al. NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution[J]. Astronomy & Astrophysics, 616, A35(2018).
[89] Adam R, Hahn O, Ruppin F et al. Substructure and merger detection in resolved NIKA Sunyaev-Zel’dovich images of distant clusters[J]. Astronomy & Astrophysics, 614, A118(2018).
[90] Adam R, Bartalucci I, Pratt G W et al. Mapping the kinetic Sunyaev-Zel’dovich effect toward MACS J0717.5+3745 with NIKA[J]. Astronomy & Astrophysics, 598, A115(2017).
[91] Adam R, Comis B, Bartalucci I et al. High angular resolution Sunyaev-Zel’dovich observations of MACS J1423.8+2404 with NIKA: multiwavelength analysis[J]. Astronomy & Astrophysics, 586, A122(2016).
[92] Calvo M, Benoît A, Catalano A et al. The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy[J]. Journal of Low Temperature Physics, 184, 816-823(2016).
[93] Adam R, Adane A, Ade P A R et al. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope[J]. Astronomy & Astrophysics, 609, A115(2018).
[94] Catalano A, Adam R, Ade P A R et al. The NIKA2 instrument at 30-m IRAM telescope: performance and results[J]. Journal of Low Temperature Physics, 193, 916-922(2018).
[95] Katsioli S, Xilouris E M, Kramer C et al. The stratification of ISM properties in the edge-on galaxy NGC 891 revealed by NIKA2[J]. Astronomy & Astrophysics, 679, A7(2023).
[97] [97] Davis K. Instrument design radiation pattern testing f terahertz astronomical instruments[D]. Tempe: Arizona State University, 2018.
[98] Fasano A, Aguiar M, Benoit A et al. The KISS experiment[J]. Journal of Low Temperature Physics, 199, 529-536(2020).
[99] [99] Fasano A, Aguiar M, Benoit A, et al. KISS: a spectrometric imager f millimetre cosmology[C]EPJ Web of Conferences. 2020: 00010.
[100] Ade P, Aravena M, Barria E et al. A wide field-of-view low-resolution spectrometer at APEX: instrument design and scientific forecast[J]. Astronomy & Astrophysics, 642, A60(2020).
[101] [101] Fasano A, Ade P, Aravena M, et al. CONCERTO: instrument status[C]EPJ Web of Conferences. 2024: 00018.
[102] Hu W, Beelen A, Lagache G et al. CONCERTO at APEX on-sky performance in continuum[J]. Astronomy & Astrophysics, 689, A20(2024).
[103] Choi S K, Austermann J, Basu K et al. Sensitivity of the Prime-Cam instrument on the CCAT-prime telescope[J]. Journal of Low Temperature Physics, 199, 1089-1097(2020).
[104] [104] Huber Z B, Lin L T, Vavagiakis E M, et al. CCAT: PrimeCam optics overview status update[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy XII. 2024: 784793.
[105] [105] Vavagiakis E M, Ahmed Z, Ali A, et al. PrimeCam: a firstlight instrument f the CCATprime telescope[C]Millimeter, Submillimeter, FarInfrared Detects Instrumentation f Astronomy IX. 2018: 375390.
[107] Shi Shengcai, Li Jing, Lin Zhenhui et al. Development of an MKIDs-based THz superconducting imaging array (TeSIA) at 0.85 THz[J]. Journal of Low Temperature Physics, 193, 128-133(2018).
[112] Morozov D, Doyle S M, Banerjee A et al. Design and characterisation of titanium nitride subarrays of kinetic inductance detectors for passive terahertz imaging[J]. Journal of Low Temperature Physics, 193, 196-202(2018).
Get Citation
Copy Citation Text
Peiling Shi, Qing He. Research progress of microwave kinetic inductance detector for terahertz astronomical detection[J]. High Power Laser and Particle Beams, 2025, 37(6): 069001
Category: Advanced Interdisciplinary Science
Received: Jan. 1, 2025
Accepted: Mar. 31, 2025
Published Online: Jun. 23, 2025
The Author Email: Qing He (18583852658@163.com)