Acta Optica Sinica, Volume. 40, Issue 23, 2310001(2020)

Planar Feature-Constrained, Quaternion-Based Registration Algorithm for LiDAR Point Clouds

Yongbo Wang1,2、*, Nanshan Zheng1,2, and Zhengfu Bian1,2
Author Affiliations
  • 1Key Laboratory of Land Environment and Disaster Monitoring, Ministry of Natural Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • 2Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less
    Figures & Tables(9)
    Four-tuple representation of a plane in three-dimensional space
    Facade LiDAR point clouds of the same building collected from different perspectives. (a) LiDAR point cloud from the reference station; (b) LiDAR point cloud from the un-registered station
    Visual effects of the point clouds from the two neighboring stations before and after registration. (a) Before registration; (b) after registration
    Facade LiDAR point clouds of the same part of another building collected from different perspectives. (a) LiDAR point cloud from the reference station; (b) LiDAR point cloud from the un-registered station
    Visual effects of the point clouds from the two neighboring stations before and after registration. (a) Before registration; (b) after registration
    • Table 1. Planar features separately extracted from the reference and the un-registered stations by least square fitting algorithm

      View table

      Table 1. Planar features separately extracted from the reference and the un-registered stations by least square fitting algorithm

      Stationlxlylzxyz
      Reference station-0.70600.7081-0.0128-70.7593-6.388726.4681
      -0.70620.7079-0.0108-50.433013.787422.2993
      -0.7103-0.7039-0.0006-50.587714.947722.2911
      -0.00600.00900.9999-61.822624.860525.7601
      -0.70440.7097-0.0113-63.677226.779316.8218
      -0.7072-0.70700.0013-63.220627.648516.8952
      -0.00240.01420.9999-61.570225.185222.5930
      Un-registered station-0.25790.9648-0.0522-63.6731-7.892015.1750
      -0.25860.9647-0.0503-36.1147-0.441016.7593
      -0.9412-0.2605-0.2152-35.74760.664217.2299
      -0.2194-0.00810.9756-41.359213.926119.8014
      -0.25600.9654-0.0508-40.000617.500910.9515
      -0.9401-0.2659-0.2132-39.203418.063311.1137
      -0.2123-0.00540.9772-40.461914.674316.7639
    • Table 2. Registration results and residuals between each pair of conjugate planar features after registration

      View table

      Table 2. Registration results and residuals between each pair of conjugate planar features after registration

      AlgorithmRT /mScale factor μΔlxΔlyΔlzmΔlΔm/mmΔm
      Proposed algorithm0.8504-0.49430.18020.47900.86910.1234-0.2176-0.01860.9759-23.008529.3766-2.29021.0000-0.0004-0.00040.00000.00080.00120.0307
      -0.0004-0.00040.0000-0.0071
      0.0001-0.0001-0.0002-0.0391
      0.00080.00080.0000-0.0352
      -0.0004-0.00040.00050.0062
      -0.00070.0007-0.00010.0394
      -0.00060.00000.00000.0352
      Algorithm in Ref. [8]0.8504-0.49450.17960.47940.86900.1227-0.2168-0.01830.9761-22.965629.3962-2.26521.0004-0.0002-0.0002-0.00010.00110.01630.0428
      -0.0002-0.0002-0.00010.0079
      -0.00010.00010.00070.0018
      0.00140.0015-0.0000-0.0627
      -0.0002-0.00020.00040.0145
      -0.00090.00090.00080.0802
      -0.00000.0007-0.00000.0085
    • Table 3. Planar features separately extracted from the reference and the un-registered stations by least square fitting algorithm

      View table

      Table 3. Planar features separately extracted from the reference and the un-registered stations by least square fitting algorithm

      Stationlxlylzxyz
      Reference station-0.0110-0.00540.9999-12.5529-38.362018.5852
      -0.0762-0.9971-0.0063-8.8728-35.727517.3675
      -0.98770.1561-0.0092-14.5785-31.495418.4312
      -0.2056-0.9786-0.0069-21.8180-28.821014.7325
      -0.2069-0.9784-0.0019-31.2109-22.808511.7132
      -0.97910.2028-0.0143-15.7465-16.39540.3823
      -0.0621-0.3808-0.9226-15.9412-16.26370.8802
      -0.0117-0.00380.9999-17.8117-31.53078.3983
      -0.98670.1623-0.0113-22.0955-31.57787.0024
      Un-registered station-0.01170.00540.9999-37.1151-16.125918.5837
      -0.7944-0.6073-0.0062-32.5529-17.174317.3245
      -0.54190.8404-0.0097-33.2499-10.138518.3661
      -0.8666-0.4990-0.0069-35.8191-3.293615.4112
      -0.8673-0.4978-0.0015-37.76348.017111.8171
      -0.50180.8649-0.0144-22.67100.84290.3696
      -0.3241-0.2110-0.9222-22.72861.05350.8693
      -0.01110.00690.9999-35.2226-8.12538.3990
      -0.53930.8420-0.0118-38.4293-4.66107.1060
    • Table 4. Registration results and residuals between each pair of conjugate planar features after registration

      View table

      Table 4. Registration results and residuals between each pair of conjugate planar features after registration

      AlgorithmRT /mScale factor μΔlxΔlyΔlzmΔlΔm/mmΔm
      Proposed algorithm0.6670-0.74510.00090.74510.6670-0.0004-0.00030.00101.00000.0058-0.08080.01370.9979-0.00010.0001-0.00000.00150.02520.0315
      0.0012-0.00010.00030.0013
      -0.0001-0.0007-0.00050.0316
      0.0006-0.00010.00020.0018
      0.0007-0.0001-0.0002-0.0110
      -0.0000-0.0002-0.00090.0350
      -0.00230.0010-0.00030.0240
      -0.00010.00030.0000-0.0030
      0.00040.0025-0.0005-0.0662
      Algorithm in Ref.[8]0.6663-0.74570.00050.74570.6663-0.0002-0.00010.00051.0000-0.0014-0.00640.00111.0000-0.00010.0001-0.00000.0017-0.00140.0440
      0.0012-0.00010.0003-0.0009
      -0.0001-0.0007-0.0005-0.0067
      0.0006-0.00010.00020.0049
      0.0007-0.0001-0.00020.0001
      -0.0000-0.0002-0.0009-0.0126
      -0.00230.0010-0.00030.0271
      -0.00010.00030.0000-0.0085
      0.00040.0025-0.0005-0.1203
    Tools

    Get Citation

    Copy Citation Text

    Yongbo Wang, Nanshan Zheng, Zhengfu Bian. Planar Feature-Constrained, Quaternion-Based Registration Algorithm for LiDAR Point Clouds[J]. Acta Optica Sinica, 2020, 40(23): 2310001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 6, 2020

    Accepted: Aug. 3, 2020

    Published Online: Nov. 23, 2020

    The Author Email: Wang Yongbo (ybwang816@163.com)

    DOI:10.3788/AOS202040.2310001

    Topics