Acta Optica Sinica, Volume. 43, Issue 2, 0212005(2023)

Detection Method for OLED Pixel Defects Based on Extended Feature Pyramid

Lan Liu1, Yun Ye1,2、*, and Tailiang Guo1,2
Author Affiliations
  • 1College of Physics and Information Engineering, Fuzhou University, Fuzhou 350100, Fujian, China
  • 2Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, Fujian, China
  • show less
    References(21)

    [1] Yu C, Chen C, Wu D et al. Research progress of inkjet printed perovskite optoelectronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 36, 158-175(2021).

    [2] Lan L H, Zou J H, Jiang C B et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 10, 329-352(2017).

    [3] Li H D. Ink jet printing will promote the rapid development of OLED display manufacturing technology[J]. Screen Printing Industry, 24-25(2018).

    [4] Shang Q Y, Bachrach R. Methods and apparatus for concurrent inkjet printing and defect inspection[P].

    [5] Lu R S, Wu A, Zhang T D et al. Review on automated optical (visual) inspection and its applications in defect detection[J]. Acta Optica Sinica, 38, 0815002(2018).

    [6] Wang Z L, Gao J, Zhao W M. New method for OLED pixel defect detection[J]. Computer Engineering and Applications, 48, 177-180(2012).

    [7] Ouyang T. Image detection algorithm for chromatic defect of OLED based on machine vision[J]. Modern Computer, 56-60, 64(2017).

    [8] Jian C X, Wang H M, Xu J J et al. Automatic surface defect detection for OLED display[J]. Packaging Engineering, 42, 280-287(2021).

    [9] Kwak J, Lee K B, Jang J et al. Automatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniques[J]. Journal of Intelligent Manufacturing, 30, 1047-1055(2019).

    [10] Sindagi V A, Srivastava S. Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description[J]. International Journal of Computer Vision, 122, 193-211(2017).

    [11] Lee J. 16-4: Invited paper: region-based machine learning for OLED Mura defects detection[J]. SID Symposium Digest of Technical Papers, 52, 200-203(2021).

    [12] Bao W Y, Chao Z, Yang Z H et al. P-13.14: two inspection methods of image quality & appearance based on edge crack of OLED display module[J]. SID Symposium Digest of Technical Papers, 52, 1048-1049(2021).

    [13] Singh R, Kumar G, Sultania G et al. Deep learning based MURA defect detection[J]. EAI Endorsed Transactions on Cloud Systems, 5, 162217(2019).

    [14] Song S B, Yang K C, Wang A N et al. A Mura detection model based on unsupervised adversarial learning[J]. IEEE Access, 9, 49920-49928(2021).

    [15] Song Z Y, Pan H P. Fabric defect classification algorithm based on multi-scale feature fusion of spatial attention[J]. Laser & Optoelectronics Progress, 59, 1010005(2022).

    [16] Tian F, Li Y, Wang J. Retinal blood vessel segmentation based on multi-scale wavelet transform fusion[J]. Acta Optica Sinica, 41, 0410001(2021).

    [17] Liu F, Guo M, Wang X J. Small target detection based on cross-scale fusion convolution neural network[J]. Laser & Optoelectronics Progress, 58, 0610012(2021).

    [18] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [19] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [21] Defard T, Setkov A, Loesch A et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[M]. del Bimbo A, Cucchiara R, Sclaroff S, et al. Pattern recognition, 12664, 475-489(2021).

    Tools

    Get Citation

    Copy Citation Text

    Lan Liu, Yun Ye, Tailiang Guo. Detection Method for OLED Pixel Defects Based on Extended Feature Pyramid[J]. Acta Optica Sinica, 2023, 43(2): 0212005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 4, 2022

    Accepted: Jul. 25, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Yun Ye (yeyun07@fzu.edu.cn)

    DOI:10.3788/AOS221411

    Topics