Chinese Journal of Lasers, Volume. 49, Issue 5, 0507204(2022)
Lightweight Deep Learning Network Assisted Cell Classification Using Lensless Computational Microscopic Imaging Data
[1] Liu K X, He Z H, Cao L C. Pattern-adaptive error diffusion algorithm for improved phase-only hologram generation[J]. Chinese Optics Letters, 19, 050501(2021).
[2] Zhang C, Xing T, Liu Z Z et al. Lens-free imaging method based on generative adversarial networks[J]. Acta Optica Sinica, 40, 1611003(2020).
[3] Zhang H, Cao L C, Jin G F et al. Progress on lensless digital holography imaging based on compressive holographic algorithm[J]. Laser & Optoelectronics Progress, 57, 080001(2020).
[4] Wang Y X, Wang D Y, Yang Y S et al. Application and analysis in the biomedicine field using digital holographic technology[J]. Chinese Journal of Lasers, 41, 0209002(2014).
[5] Zhang J L, Chen Q, Zhang X Y et al. Lens-free on-chip microscopy: theory, advances, and applications[J]. Infrared and Laser Engineering, 48, 0603009(2019).
[6] Agarwal K, Macháň R. Multiple signal classification algorithm for super-resolution fluorescence microscopy[J]. Nature Communications, 7, 13752(2016).
[7] Harder N, Eils R, Rohr K. Automated classification of mitotic phenotypes of human cells using fluorescent proteins[J]. Methods in Cell Biology, 85, 539-554(2008).
[8] Xu L P. Importance and clinical analysis of blood smear analysis in routine blood tests[J]. For All Health, 8, 69(2014).
[9] Lyons A B, Parish C R. Determination of lymphocyte division by flow cytometry[J]. Journal of Immunological Methods, 171, 131-137(1994).
[10] Nie Z H, Seo M, Xu S Q et al. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids[J]. Microfluidics and Nanofluidics, 5, 585-594(2008).
[11] Xu G X, Zhen B Y, Zhang L B et al. Electron microscopy enzyme cytochemistry technology and its application[J]. Journal of Chinese Electron Microscopy Society, 7, 124(1988).
[12] Vasudevan M, Bhaduri A K, Raj B et al. Delta ferrite prediction in stainless steel welds using neural network analysis and comparison with other prediction methods[J]. Journal of Materials Processing Technology, 142, 20-28(2003).
[13] du Jardin P, Ponsaillé J, Alunni-Perret V et al. A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population[J]. Forensic Science International, 192, 127.e1-127.e6(2009).
[15] Chen C L, Mahjoubfar A, Tai L C et al. Deep learning in label-free cell classification[J]. Scientific Reports, 6, 21471(2016).
[16] Kim S J, Wang C Q, Zhao B et al. Deep transfer learning-based hologram classification for molecular diagnostics[J]. Scientific Reports, 8, 17003(2018).
[17] Rubin M R, Stein O, Turko N A et al. TOP-GAN: stain-free cancer cell classification using deep learning with a small training set[J]. Medical Image Analysis, 57, 176-185(2019).
[18] Kurnianingsih , Allehaibi K H S, Nugroho L E et al. Segmentation and classification of cervical cells using deep learning[J]. IEEE Access, 7, 116925-116941(2019).
[19] Yang W J, Xue H R, Bai J. Research and implementation of somatic cell classifier in milk[J]. Digital Technology & Application, 39, 114-116(2021).
[20] Patil A M, Patil M D, Birajdar G K. White blood cells image classification using deep learning with canonical correlation analysis[J]. IRBM, 42, 378-389(2021).
[21] Huang P, Wang J, Zhang J et al. Attention-aware residual network based manifold learning for white blood cells classification[J]. IEEE Journal of Biomedical and Health Informatics, 25, 1206-1214(2021).
[22] Long F, Peng J J, Song W T et al. BloodCaps: a capsule network based model for the multiclassification of human peripheral blood cells[J]. Computer Methods and Programs in Biomedicine, 202, 105972(2021).
[23] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C], 15523970(2015).
[24] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[25] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[26] Xie S N, Girshick R, Dollár P et al. Aggregated residual transformations for deep neural networks[C], 5987-5995(2017).
[27] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[28] Zhang X Y, Zhou X Y, Lin M X et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C], 6848-6856(2018).
[30] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).
[31] Tian L, Loomis N, Domínguez-Caballero J A et al. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography[J]. Applied Optics, 49, 1549-1554(2010).
Get Citation
Copy Citation Text
Zhaohui Wang, Huan Kang, Duofang Chen, Xinyi Xu, Qi Zeng, Jimin Liang, Xueli Chen. Lightweight Deep Learning Network Assisted Cell Classification Using Lensless Computational Microscopic Imaging Data[J]. Chinese Journal of Lasers, 2022, 49(5): 0507204
Received: Oct. 15, 2021
Accepted: Jan. 10, 2022
Published Online: Mar. 9, 2022
The Author Email: Liang Jimin (jimleung@mail.xidian.edu.cn), Chen Xueli (xlchen@xidian.edu.cn)