Chinese Journal of Lasers, Volume. 49, Issue 5, 0507204(2022)

Lightweight Deep Learning Network Assisted Cell Classification Using Lensless Computational Microscopic Imaging Data

Zhaohui Wang1, Huan Kang1, Duofang Chen1, Xinyi Xu1, Qi Zeng1, Jimin Liang2、**, and Xueli Chen1、*
Author Affiliations
  • 1Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi, China
  • 2School of Electronic Engineering, Xidian University, Xi’an 710126, Shaanxi, China
  • show less
    Figures & Tables(8)
    Lens-less computational microscopic imaging and classification system
    Microscopic images of ECa109 cells under lensless computational microscopic imaging system and 4× objective lens. (a) Full field-of-view image of ECa109 cells acquired by lensless computational microscopic imaging system; (b) microscopic image of ECa109 cells in square outlined in Fig. 2(a) under 4× objective lens; (c) enlarged image of ECa109 cells in square outlined in Fig. 2(a) acquired by lensless computational microscopic imaging system
    Images of different cells. (a) SUM cell; (b) MCF10A cell; (c) ECa109 cell; (d) CL-1 cell
    Network structure of Depthwise-ResNeXt
    Fuzzy matrix of Depthwise-ResNeXt
    • Table 1. Experimental results of networks with different sizes

      View table

      Table 1. Experimental results of networks with different sizes

      Way to improveChannel numberTest accuracy
      Conv 1Layer 1Layer 2Layer 3Layer 4
      Depthwise convolution3232641282560.889
      Depthwise convolution64641282565120.928
      Depthwise convolution646412825600.905
      Depthwise convolution6412825651210240.926
    • Table 2. Experimental results of different structured networks

      View table

      Table 2. Experimental results of different structured networks

      IndexChannel shuffleDepthwise convolutionAsymmetric convolutionDepthwise convolution & channel shuffleDepthwise convolution & asymmetric convolutionAllResNeXtM
      Accuracy0.9220.9280.9220.9130.9110.9080.921
      Calculated amount /1091.041.011.031.011.011.001.04
      Number of parameters /kB846806830806803803846
      Time /s1.17±5×10-41.12±4.2×10-41.18±1.4×10-41.13±2.2×1051.12±2.4×1051.15±2.2×10-41.16±6.4×10-5
    • Table 3. Comparison of different network structures

      View table

      Table 3. Comparison of different network structures

      IndexShuffleNetMobileNetResNetDenseNetGoogleNetDepthwise-ResNeXt
      Accuracy0.8850.8700.9240.9310.9240.928
      Calculated amount/109253.406×10-31.94410.46010.2474.881.01
      Number of parameters /kB345.4602.228×10311.172×1036.952×1035.598×103806
      Run time /s1.25±26×10-41.33±4.8×10-41.19±1.6 ×10-51.88±9.4×10-41.33±2.1×10-41.12±4.2×10-4
    Tools

    Get Citation

    Copy Citation Text

    Zhaohui Wang, Huan Kang, Duofang Chen, Xinyi Xu, Qi Zeng, Jimin Liang, Xueli Chen. Lightweight Deep Learning Network Assisted Cell Classification Using Lensless Computational Microscopic Imaging Data[J]. Chinese Journal of Lasers, 2022, 49(5): 0507204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 15, 2021

    Accepted: Jan. 10, 2022

    Published Online: Mar. 9, 2022

    The Author Email: Liang Jimin (jimleung@mail.xidian.edu.cn), Chen Xueli (xlchen@xidian.edu.cn)

    DOI:10.3788/CJL202249.0507204

    Topics