Acta Photonica Sinica, Volume. 53, Issue 7, 0753303(2024)
Progress on Ultraviolet Photodetection Based on Narrow Bandgap Semiconductors (Invited)
[2] GLASER P E. Power from the sun: its future[J]. Science, 162, 857-861(1968).
[3] CHEN H Y, LIU K W, HU L F et al. New concept ultraviolet photodetectors[J]. Materials Today, 18, 493-502(2015).
[4] CHEN H Y, YU P P, ZHANG Z Z et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer[J]. Small, 12, 5809-5816(2016).
[5] KAPP F G, PERLIN J R, HAGEDRON E J et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche[J]. Nature, 558, 445-448(2018).
[6] KEPPLER F, VIGANO I, MCLEPD A et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere[J]. Nature, 486, 93-96(2012).
[7] XIE C, LU X T, TONG X W et al. Recent progress in solar-blind deep ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 29, 1806006(2019).
[8] CHEN J X, OUYANG W X, YANG W et al. Recent progress of heterojunction ultraviolet photodetectors: material, integration, and applications[J]. Advanced Functional Materials, 30, 1909909(2020).
[9] SHI F, LU J G, LU H et al. Comparative studies of silicon photomultipliers and traditional vacuum photomultiplier tubes[J]. Chinese Physics C, 35, 50-55(2011).
[10] GARUTTI E. Silicon photomultipliers for high energy physics detectors[J]. Journal of Instrumentation, 6, C10003(2011).
[11] NIKZAD S, HOENK M, JEWELL A D et al. Single photon counting UV solar-blind detectors using silicon and III-nitride materials[J]. Sensors, 16, 927(2016).
[12] SHI L, NIHTIANOV S. Comparative study of silicon-based ultraviolet photodetectors[J]. IEEE Sensors Journal, 12, 2453-2459(2012).
[13] LI W D, CHOU S Y. Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography[J]. Optics Express, 18, 931-937(2010).
[14] KUSDEMIR E, OZKENDIR D, FIRAT V et al. Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector[J]. Journal of Physics D: Applied Physics, 48, 095104(2015).
[15] ZHANG H C, LIANG F Z, SONG K et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W[J]. Applied Physics Letters, 118, 242105(2021).
[16] GUO Daoyou, LI Peigang, CHEN Zhengwei et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector[J]. Acta Physica Sinica, 68, 078501(2019).
[17] KALRA A, MUAZZAM U U, MURALIDHARAN R et al. The road ahead for ultrawide bandgap solar-blind UV photodetectors[J]. Journal of Applied Physics, 132, 150901(2022).
[18] HOU Y N, MEI Z X, LIANG H L et al. Dual-band MgZnO ultraviolet photodetector integrated with Si[J]. Applied Physics Letters, 120, 153510(2013).
[19] CAI Q, YOU H F, GUO H et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays[J]. Light Science & Applications, 10, 94(2021).
[20] YANG W, HULLAVARAD S S, NAGARAJ B et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors[J]. Applied Physics Letters, 82, 3424-3426(2003).
[22] SZE S M, NG K K[M]. Physics of semiconductor devices(2007).
[23] JOSHI N V[M]. Photoconductivity: art: science & technology(1990).
[24] BUSCEMA M, ISLAND J O, GROENENDIJK D J et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 44, 3691-3718(2015).
[25] LIU J M[M]. Photonic devices(2009).
[26] MUN J H, KONG H J, LEE J H et al. Enhanced photocurrent performance of flexible micro-photodetector based on PN nanowires heterojunction using all-laser direct patterning[J]. Advanced Functional Materials, 33, 2214950(2023).
[27] ZHANG Y, YANG X X, DAI Y P et al. Ternary GePdS3: 1D van der Waals nanowires for integration of high-performance flexible photodetectors[J]. ACS Nano, 17, 7941-8836.
[28] LI Y B, WANG S Y, HONG J H et al. Polarization-sensitive photodetector based on high crystallinity quasi-1D Bisel nanowires synthesized via chemical vapor deposition[J]. Small, 19, 2302623(2023).
[29] CAO L, WHITE J S, PARK J S et al. Engineering light absorption in semiconductor nanowire devices[J]. Nature Materials, 8, 643-647(2009).
[30] SNYDER A W, LOVE J D[M]. Optical waveguide theory(1983).
[31] CAO L, FAN P Y, VASUDEV A P et al. Semiconductor nanowire optical antenna solar absorbers[J]. Nano Letters, 10, 439-445(2010).
[32] LIU J Y, WANG J J, LIN D H et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances[J]. ACS Applied Materials & Interfaces, 14, 32341-32349(2022).
[33] BHARDWAJ R, SHARMA P, SINGH R et al. High responsivity MgxZn1-xO based ultraviolet photodetector fabricated by dual ion beam sputtering[J]. IEEE Sensors Journal, 18, 2744-2750(2018).
[34] GUNDIMEDA A, KRISHNA S, AGGARWAL N et al. Fabrication of non-polar GaN based highly responsive and fast UV photodetector[J]. Applied Physics Letters, 110, 103507(2017).
[35] WANG B, LEU P W. Tunable and selective resonant absorption in vertical nanowires[J]. Optics Letters, 37, 3756-3758(2012).
[36] FOUNTAINE K T, WHITNEY W S, ATWATER H A. Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes[J]. Journal of Applied Physics, 116, 153106(2014).
[37] WANG J J, FU C, CHENG H Y et al. Leaky mode resonance induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions[J]. ACS Nano, 15, 16729-16737(2021).
[39] CHEN C R, MOU F Z, XU L L et al. Light-steered isotropic semiconductor micromotors[J]. Advanced Materials, 29, 1603374(2017).
[40] XIE Z A, LIU S F, QIN L X et al. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry[J]. Optical Materials Express, 5, 29-43(2015).
[41] ALI A, SHEHZAD K, GUO H W et al. High-performance, flexible graphene/ultra-thin silicon ultraviolet image sensor[J]. IEEE International Electron Devices Meeting, 203-206(2017).
[42] CAO R, ZHANG Y, WANG H D et al. Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets[J]. Nanophotonics, 9, 2459-2466(2020).
[43] XIE C, LIU C K, LOI H L et al. Perovskite-based phototransistors and hybrid photodetectors[J]. Advanced Functional Materials, 30, 1903907(2020).
[44] LI X, LIU C, DING F et al. Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films[J]. Advanced Functional Materials, 33, 2213360(2023).
[45] CEN G B, LV Y B, YUAN Y et al. High-performance ultraviolet photodetectors based on MAPbCl3 perovskites for visible-light-insensitive defect detection[J]. Journal of Materials Chemistry C, 11, 9341-9347(2023).
[46] DENG X L, LI Z Q, CAO F et al. Woven fibrous photodetectors for scalable UV optical communication device[J]. Advanced Functional Materials, 33, 2213334(2023).
[47] LIU M M, ZHOU L L, LI S F et al. A sensitive UV photodetector based on non-wide bandgap MAPbBr3 nanosheet[J]. IEEE Transactions on Electron Devices, 69, 5590-5594(2022).
[48] WU C Y, LE Y X, LIANG L Y et al. Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection[J]. Journal of Materials Science & Technology, 159, 251-257(2023).
[49] BRITNELL L, RIBEIRO R M, ECKMANN A et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 340, 1311-1314(2013).
[50] XIA F N, WANG H, XIAO D et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 8, 889-907(2014).
[51] LONG M S, WANG P, FANG H H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).
[52] YAN Y, XIONG W Q, LI S S et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection[J]. Advanced Optical Materials, 7, 1900622(2019).
[53] SEGURA A, BOUVIER J, ANDRES M V et al. Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses[J]. Physical Review B, 56, 4075-4084(1997).
[54] LI S D, GE L H, LIU Z et al. Synthesis and photoresponse of large GaSe atomic layers[J]. Nano Letters, 13, 2777-2781(2013).
[55] ZHANG S R, ZHU S F, ZHAO B J et al. First-principles study of the elastic, electronic and optical properties of ε-GaSe layered semiconductor[J]. Physica B: Condensed Matter, 436, 188-192(2014).
[56] WU C Y, WANG M, LI J Y et al. Non-ultrawide bandgap semiconductor GaSe nanobelts for sensitive deep ultraviolet light photodetector application[J]. Small, 18, 2200594(2022).
Get Citation
Copy Citation Text
Chunyan WU, Yuliang ZHANG, Xinhui HE, Xiaoping YANG, Xiujuan WANG. Progress on Ultraviolet Photodetection Based on Narrow Bandgap Semiconductors (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753303
Category: Special Issue for Attosecond Optics
Received: Jan. 18, 2024
Accepted: Mar. 5, 2024
Published Online: Aug. 12, 2024
The Author Email: Chunyan WU (cywu@hfut.edu.cn), Xiujuan WANG (xjwang2022@hfut.edu.cn)