Journal of Infrared and Millimeter Waves, Volume. 42, Issue 2, 169(2023)
Research progress of ultra-broadband photodetectors
[1] LONG M, WANG P, FANG H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).
[2] WANG G, ZHANG Y, YOU C et al. Two dimensional materials based photodetectors[J]. Infrared Physics & Technology, 88, 149-73(2018).
[3] FANG J, ZHOU Z, XIAO M et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors[J]. InfoMat, 2, 291-317(2020).
[4] MONROY E, OMNèS F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor science and technology, 18, R33-R51(2003).
[5] ROGALSKI A. Infrared detectors: an overview[J]. Infrared physics & technology, 43, 187-210(2002).
[6] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature photonics, 1, 97-105(2007).
[7] SIZOV F. THz radiation sensors[J]. Opto-electronics review, 18, 10-36(2010).
[8] KE W, YU JIAN C, DJERAFI T et al. Substrate-Integrated Millimeter-Wave and Terahertz Antenna Technology[J]. Proceedings of the IEEE, 100, 2219-32(2012).
[9] RIEKE G[M]. Detection of Light: from the Ultraviolet to the Submillimeter(2003).
[10] ROBERGE A, MOUSTAKAS L A. The large ultraviolet/optical/infrared surveyor[J]. Nature Astronomy, 2, 605-7(2018).
[11] GEIS M W, SPECTOR S J, GREIN M E et al. CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band[J]. IEEE Photonics Technology Letters, 19, 152-4(2007).
[12] ELGALA H, MESLEH R, HAAS H J I C M. Indoor optical wireless communication: potential and state-of-the-art[J]. IEEE Communications Magazine, 49, 56-62(2011).
[13] WAXMAN A M, GOVE A N, FAY D A et al. Color night vision: opponent processing in the fusion of visible and IR imagery[J]. Neural Networks, 10, 1-6(1997).
[14] STUART B H[M]. Infrared spectroscopy: fundamentals and applications(2004).
[15] HUANG X, EL-SAYED I H, QIAN W et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-20(2006).
[16] CHEN H, LIU H, ZHANG Z et al. Nanostructured Photodetectors: From Ultraviolet to Terahertz[J]. Advanced Materials, 28, 403-33(2016).
[17] QIU Q, HUANG Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves[J]. Adv Mater, 33, e2008126(2021).
[18] JONES R C. Phenomenological Description of the Response and Detecting Ability of Radiation Detectors[J]. Proceedings of the IRE, 47, 1495-502(1959).
[19] KIND H, YAN H, MESSER B et al. Nanowire Ultraviolet Photodetectors and Optical Switches[J]. Advanced Materials, 14, 158-60(2002).
[20] LIU Y, YIN J, WANG P et al. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films[J]. ACS applied materials & interfaces, 10, 36304-11(2018).
[21] HE X, LéONARD F, KONO J. Uncooled Carbon Nanotube Photodetectors[J]. Advanced Optical Materials, 3, 989-1011(2015).
[22] YANG L H, ZHANG J Z, XU H et al. Progress in carbon nanotube films based photodetectors[J]. J. Infrared Millim. Waves., 40, 439(2021).
[23] WU D, MA Y, NIU Y et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature[J]. Science advances, 4, eaao3057(2018).
[24] FANG H, XU C, DING J et al. Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal[J]. ACS Applied Materials & Interfaces, 8, 32934-9(2016).
[25] YIN C, GONG C, CHU J et al. Ultrabroadband photodetectors up to 10.6 µm based on 2D Fe3O4 nanosheets[J]. Advanced Materials, 32, e2002237(2020).
[26] WU J Y, CHUN Y T, LI S et al. Broadband MoS2 Field-Effect Phototransistors: Ultrasensitive Visible-Light Photoresponse and Negative Infrared Photoresponse[J]. Advanced Materials, 30, 1705880(2018).
[27] LI Y, ZHANG Y, LI T et al. Ultrabroadband, Ultraviolet to Terahertz, and High Sensitivity CH3NH3PbI3 Perovskite Photodetectors[J]. Nano Letters, 20, 5646-54(2020).
[28] CAO Y, YANG H, ZHAO Y et al. Fully Suspended Reduced Graphene Oxide Photodetector with Annealing Temperature-Dependent Broad Spectral Binary Photoresponses[J]. ACS Photonics, 4, 2797-806(2017).
[29] XIE Y, HAN M, WANG R et al. Graphene Aerogel Based Bolometer for Ultrasensitive Sensing from Ultraviolet to Far-Infrared[J]. ACS Nano, 13, 5385-96(2019).
[30] JI X, WANG H, CHEN T et al. Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from UV to microwave[J]. Carbon, 161, 590-8(2020).
[31] JANG D, KIMBRUE M, YOO Y-J et al. Spectral Characterization of a Microbolometer Focal Plane Array at Terahertz Frequencies[J]. IEEE Transactions on Terahertz Science and Technology, 9, 150-4(2019).
[33] WEN J, NIU Y, WANG P et al. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity[J]. Carbon, 153, 274-84(2019).
[34] LI Y, ZHANG Y, CHEN Z et al. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 8, 1301-8(2020).
[35] LI Y, ZHANG Y, YU Y et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 8, 368-74(2020).
[36] HU Q, CAO Y, LIU Y et al. Ultra-wideband self-powered photodetector based on suspended reduced graphene oxide with asymmetric metal contacts[J]. RSC Advances, 11, 19482-91(2021).
[37] LIU Y, HU Q, CAO Y et al. High-Performance Ultrabroadband Photodetector Based on Photothermoelectric Effect[J]. ACS Applied Materials & Interfaces, 14, 29077-86(2022).
[38] LV B, LIU Y, WU W et al. Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure[J]. Nature communications, 13, 1835(2022).
[39] WANG Y, NIU Y, CHEN M et al. Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe3 Single Crystal[J]. ACS Photonics, 6, 895-903(2019).
[40] LU X, JIANG P, BAO X. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector[J]. Nature communications, 10, 138(2019).
[41] LI Y, ZHANG Y, LI T et al. A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbI3/PEDOT:PSS composite[J]. Journal of Materials Chemistry C, 8, 12148-54(2020).
[42] NIU Y, WANG Y, WU W et al. Ultrabroadband, Fast, and Flexible Photodetector Based on HfTe5 Crystal[J]. Advanced Optical Materials, 8, 2000833(2020).
[43] WU W, WANG Y, NIU Y et al. Thermal Localization Enhanced Fast Photothermoelectric Response in a Quasi-One-Dimensional Flexible NbS3 Photodetector[J]. ACS Applied Materials & Interfaces, 12, 14165-73(2020).
[44] LI G, YIN S, TAN C et al. Fast Photothermoelectric Response in CVD‐Grown PdSe2 Photodetectors with In‐Plane Anisotropy[J]. Advanced Functional Materials, 31(2021).
[45] GU Y, YAO X, GENG H et al. Large-Area, Flexible, and Dual-Source Co-Evaporated Cs3Cu2I5 Nanolayer to Construct Ultra-Broadband Photothermoelectric Detector from Visible to Terahertz[J]. ACS Applied Electronic Materials, 4, 663-71(2022).
[46] ZHANG X, WANG Q, JIN Z et al. Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4:Yb,Er quantum dots[J]. Nanoscale, 9, 6278-85(2017).
[47] NIU Y Y, WU D, SU Y Q et al. Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies[J]. 2D Materials, 5, 011008(2017).
[48] NIU Y, WANG B, CHEN J et al. Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature[J]. Journal of Materials Chemistry C, 6, 713-6(2018).
[49] HAO-NAN G, RUN-ZHANG X, JIA-XIANG G et al. Artificial micro-and nano-structure enhanced long and very long-wavelength infrared detectors br[J]. ACTA PHYSICA SINICA, 71(2022).
[50] CAKMAKYAPAN S, LU P K, NAVABI A et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime[J]. Light: Science & Applications, 7, 20(2018).
[51] WANG F, LIU Z, ZHANG T et al. Fully Depleted Self-Aligned Heterosandwiched Van Der Waals Photodetectors[J]. Advanced Materials, 34, e2203283(2022).
[52] DING N, WU Y, XU W et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared[J]. Light: Science & Applications, 11, 91(2022).
[53] XU H, HAO L, LIU H et al. Flexible SnSe Photodetectors with Ultrabroad Spectral Response up to 10.6 mum Enabled by Photobolometric Effect[J]. ACS applied materials & interfaces, 12, 35250-8(2020).
[54] NAWAZ M Z, XU L, ZHOU X et al. High-Performance and Broadband Flexible Photodetectors Employing Multicomponent Alloyed 1D CdSxSe1-x Micro-Nanostructures[J]. ACS Applied Materials & Interfaces, 14, 19659-71(2022).
[55] MAK K F, JU L, WANG F et al. Optical spectroscopy of graphene: From the far infrared to the ultraviolet[J]. Solid State Communications, 152, 1341-9(2012).
[56] CAO Y, ZHU J, XU J et al. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions[J]. Small, 10, 2345-51(2014).
[57] XU J, HU J, WANG R et al. Ultra-broadband graphene-InSb heterojunction photodetector[J]. Applied Physics Letters, 111, 051106(2017).
[58] YU X-X, YIN H, LI H-X et al. A novel high-performance self-powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation[J]. Journal of Materials Chemistry C, 6, 630-6(2018).
[59] HUANG H, WANG F, LIU Y et al. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films[J]. ACS applied materials & interfaces, 9, 12743-9(2017).
[60] HUANG H, ZHANG D, WEI N et al. Plasmon-Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode[J]. Advanced Optical Materials, 5, 1600865(2017).
[61] MAHJOURI-SAMANI M, ZHOU Y S, HE X N et al. Plasmonic-enhanced carbon nanotube infrared bolometers[J]. Nanotechnology, 24, 035502(2013).
[62] ZHOU C, WANG S, SUN J et al. Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles[J]. Applied Physics Letters, 102, 103102(2013).
[63] LIU Y, CHENG R, LIAO L et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature communications, 2, 579(2011).
[64] SARKAR K, DEVI P, LATA A et al. Engineering carbon quantum dots for enhancing the broadband photoresponse in a silicon process-line compatible photodetector[J]. Journal of Materials Chemistry C, 7, 13182-91(2019).
[65] YAO J, SHAO J, WANG Y et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 7, 12535-41(2015).
[66] YANG M, WANG J, ZHAO Y et al. Three-Dimensional Topological Insulator Bi2Te3/Organic Thin Film Heterojunction Photodetector with Fast and Wideband Response from 450 to 3500 Nanometers[J]. ACS Nano, 13, 755-63(2019).
[67] ZENG L-H, LIN S-H, LI Z-J et al. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction[J]. Advanced Functional Materials, 28, 1705970(2018).
[68] ZENG L, LIN S, LOU Z et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm[J]. NPG Asia Materials, 10, 352-62(2018).
[69] ZHANG Z X, LONG-HUI Z, TONG X W et al. Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe2/Perovskite Heterojunctions[J]. The journal of physical chemistry letters, 9, 1185-94(2018).
[70] JIA C, HUANG X, WU D et al. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction[J]. Nanoscale, 12, 4435-44(2020).
[71] ZHAO C, LIANG Z, SU M et al. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO3-x/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering[J]. ACS Applied Materials & Interfaces, 7, 25981-90(2015).
[72] KUMAR M, PATEL M, KIM H S et al. High-Speed, Self-Biased Broadband Photodetector-Based on a Solution-Processed Ag Nanowire/Si Schottky Junction[J]. ACS applied materials & interfaces, 9, 38824-31(2017).
[73] CHEN L, TIAN W, MIN L et al. Si/CuIn0.7Ga0.3Se2 Core–Shell Heterojunction for Sensitive and Self-Driven UV–vis–NIR Broadband Photodetector[J]. Advanced Optical Materials, 7, 1900023(2019).
[74] LIU J, WEN H, SHEN L. Highly sensitive, broadband, fast response organic photodetectors based on semi-tandem structure[J]. Nanotechnology, 31, 214001(2020).
[75] LI C, WANG H, WANG F et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging[J]. Light: Science & Applications, 9, 31(2020).
[76] MA S, LI K, XU H et al. Lattice-Mismatched PbTe/ZnTe Heterostructure with High-Speed Midinfrared Photoresponses[J]. ACS applied materials & interfaces, 11, 39342-50(2019).
[77] ZHU J, XU H, WANG Z et al. Lateral photovoltaic mid-infrared detector with a two-dimensional electron gas at the heterojunction interface[J]. Optica, 7(2020).
[78] WEI X D, CAI C F, ZHANG B P et al. PbTe photovoltaic mid-IR detectors[J]. J. Infrared Millim. Waves., 30, 293(2011).
[79] NI Z, MA L, DU S et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors[J]. ACS Nano, 11, 9854-62(2017).
[80] XIE C, YOU P, LIU Z et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions[J]. Light: Science & Applications, 6, e17023(2017).
[81] DENG T, ZHANG Z, LIU Y et al. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors[J]. Nano letters, 19, 1494-503(2019).
[82] GROTEVENT M J, HAIL C U, YAKUNIN S et al. Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 µm[J]. Advanced Science, 8, 2003360(2021).
[83] YU P, ZENG Q, ZHU C et al. Ternary Ta2 PdS6 Atomic Layers for an Ultrahigh Broadband Photoresponsive Phototransistor[J]. Advanced Materials, 33, e2005607(2021).
[84] WANG X, SHEN H, CHEN Y et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm[J]. Advanced science, 6, 1901050(2019).
[85] JIANG W, ZHENG T, WU B et al. A versatile photodetector assisted by photovoltaic and bolometric effects[J]. Light: Science & Applications, 9, 160(2020).
[86] JIANG T, HUANG Y, MENG X. CdS core-Au/MXene-based photodetectors: Positive deep-UV photoresponse and negative UV-Vis-NIR photoresponse[J]. Applied Surface Science, 513, 145813(2020).
Get Citation
Copy Citation Text
Yu LIU, Zhi-Cheng LIN, Peng-Fei WANG, Feng HUANG, Jia-Lin SUN. Research progress of ultra-broadband photodetectors[J]. Journal of Infrared and Millimeter Waves, 2023, 42(2): 169
Category: Research Articles
Received: Oct. 26, 2022
Accepted: --
Published Online: Jul. 19, 2023
The Author Email: Feng HUANG (huangf@fzu.edu.cn)