Acta Optica Sinica, Volume. 43, Issue 17, 1719003(2023)
Review of Linearly Polarized Supercontinuum
[1] Jiang L, Song R, He J R et al. Realization of 714 W visible light to near infrared supercontinuum laser output in fiber amplifier[J]. Chinese Journal of Lasers, 49, 0916001(2022).
[2] Yang L Y, Zhang B, Hou J. Progress on high-power supercontinuum laser sources at 3-5 μm[J]. Chinese Journal of Lasers, 49, 0101001(2022).
[3] Zhang C, Chen S P, Li B et al. Narrow linewidth 49 W all fiber linearly polarized picosecond laser operating at 1016 nm[J]. IEEE Photonics Journal, 14, 1513307(2022).
[4] Dontsova E I, Kablukov S I, Vatnik I D et al. Frequency doubling of Raman fiber lasers with random distributed feedback[J]. Optics Letters, 41, 1439-1442(2016).
[5] Shang Y P, Shen M L, Wang P et al. Amplified random fiber laser-pumped mid-infrared optical parametric oscillator[J]. Chinese Optics Letters, 14, 121901-121904(2016).
[6] Wu H S, Song J X, Ye J et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 16, 061402(2018).
[7] Zhang W R, Chen S Y, Su R T et al. Gain-switched linearly polarized single-frequency pulsed fiber laser[J]. Acta Physica Sinica, 71, 194204(2022).
[8] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).
[9] Wang T, Li C, Liu Y et al. Efficient coherent polarization synthesis of ultrafast laser based on fiber stretcher phase locking[J]. Chinese Journal of Lasers, 49, 2316002(2022).
[10] Ma P F, Wang X L, Su R T et al. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 28, 10-11(2016).
[11] Zhang P F, Xu X D, Yu H L et al. All-fiber-integrated linearly polarized fiber laser delivering 476 μJ, 50 kHz, nanosecond pulses for ultrasonic generation[J]. Applied Optics, 55, 3719-3723(2016).
[12] Zhou P, Huang L, Xu J M et al. High power linearly polarized fiber laser: generation, manipulation and application[J]. Science China Technological Sciences, 60, 1784-1800(2017).
[13] Ma P F, Zhou P, Ma Y X et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination[J]. Optics Letters, 37, 2658-2660(2012).
[14] Zhu X L, Yu J Y, Cai Y J. Research progress of generation of partially coherent beams with prescribed correlation structures[J]. Acta Photonica Sinica, 51, 0151103(2022).
[15] Fade J, Panigrahi S, Carré A et al. Long-range polarimetric imaging through fog[J]. Applied Optics, 53, 3854-3865(2014).
[16] Treibitz T, Schechner Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 385-399(2009).
[17] Jacques S L, Roman J R, Lee K. Imaging superficial tissues with polarized light[J]. Lasers in Surgery and Medicine, 26, 119-129(2000).
[18] He H H, Zeng N, Liao R et al. Progresses of polarization imaging techniques and their applications in cancer detections[J]. Progress in Biochemistry and Biophysics, 42, 419-433(2015).
[19] Ramella-Roman J C, Lee M D K, Prahl S A et al. Design, testing, and clinical studies of a handheld polarized light camera[J]. Journal of Biomedical Optics, 9, 1305-1310(2004).
[20] Heidt A M, Modupeh Hodasi J, Rampur A et al. Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise[J]. Scientific Reports, 10, 16734(2020).
[21] Jensen M, Gonzalo I B, Engelsholm R D et al. Noise of supercontinuum sources in spectral domain optical coherence tomography[J]. Journal of the Optical Society of America B, 36, A154-A160(2019).
[22] Lehtonen M, Genty G, Ludvigsen H et al. Supercontinuum generation in a highly birefringent microstructured fiber[J]. Applied Physics Letters, 82, 2197-2199(2003).
[23] Yu Y Q, Ruan S C, Du C L et al. Spectral broadening using a polarization-maintaining photonic crystal fiber by an optical parametric amplifier[J]. Proceedings of SPIE, 6025, 602507(2006).
[24] Zhao Y Y, Zhou G Y, Li J S et al. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence[J]. Acta Physica Sinica, 62, 214212(2013).
[25] Xiong M J, Li J Y, Luo X et al. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber[J]. Acta Physica Sinica, 66, 094204(2017).
[26] Tarnowski K, Martynkien T, Mergo P et al. Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber[J]. Scientific Reports, 9, 12313(2019).
[27] Tao Y, Chen S P, Xu H. Hundred-watt level linearly polarized visible supercontinuum generation[J]. Optics Express, 27, 26044-26049(2019).
[28] Genier E, Grelet S, Engelsholm R D et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1390 nm[J]. Optics Letters, 46, 1820-1823(2021).
[29] Zhang B, Jin A J, Ma P F et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier[J]. Optics Express, 23, 28683-28690(2015).
[30] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).
[31] Shen R, Fang H, Zhao J Q et al. Over 10 W linearly polarized supercontinuum directly produced in an erbium-doped fiber MOPA seeded with stretched soliton[J]. Applied Optics, 60, 257-263(2021).
[32] Ali Rezvani S, Ogawa K, Fuji T K. Highly coherent multi-octave polarization-maintained supercontinuum generation solely based on ZBLAN fibers[J]. Optics Express, 28, 29918-29926(2020).
[33] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).
[34] Gonzalo I B, Engelsholm R D, Sørensen M P et al. Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation[J]. Scientific Reports, 8, 6579(2018).
[35] Yu Y, Gai X, Ma P et al. Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016).
[36] Qi T C, Yang Y S, Li D et al. Kilowatt-level supercontinuum generation in random Raman fiber laser oscillator with full-open cavity[J]. Journal of Lightwave Technology, 40, 7159-7166(2022).
[37] Dong K G, Zhang H Y, Li Y et al. Generation of 563 W all-fiber white-light supercontinuum source[J]. High Power Laser and Particle Beams, 30, 100101(2018).
[38] Qi X, Chen S P, Li Z H et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm[J]. Optics Letters, 43, 1019-1022(2018).
[39] Li G H, Zhao M S, Wu F Q et al. Study of a measurement system for high extinction ratio[J]. Chinese Journal of Lasers, 17, 51-53(1990).
[40] Xue S R. Full-automatic polarization extinction ratio tester[P].
[41] Zhang Y Q, Xu G C, Yin B Q. Measuring technology of polarization extinction ratio with high speed and wide dynamic range[J]. Infrared, 41, 40-44(2020).
[42] Wang G J, Yan H D. Research on polarization extinction ratio measurement system[J]. Measurement System, 41, 40-44(2019).
[43] Kraemer M, Baur T. Extinction ratio measurements on high purity linear polarizers[J]. Proceedings of SPIE, 10655, 1065505(2018).
[44] Takubo Y, Takeda N, Huang J H et al. Precise measurement of the extinction ratio of a polarization analyser[J]. Measurement Science and Technology, 9, 20-23(1998).
[45] Song J X, Wu H S, Xu J M et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 27, 094209(2018).
[46] Wu Y L, Xiao Q R, Li D et al. Thermal induced polarization coupling in double-cladding linearly polarized fiber lasers[J]. Optics Communications, 512, 128036(2022).
[47] Wang Y S, Peng W J, Wang J et al. 4.45 kW narrow linewidth linear polarization near single mode all-fiber laser[J]. Chinese Journal of Lasers, 49, 1816003(2022).
[48] Genier E, Ghosh A N, Bobba S et al. Cross-phase modulation instability in PM ANDi fiber-based supercontinuum generation[J]. Optics Letters, 45, 3545-3548(2020).
[49] Tao Y. High power linear polarization supercontinuum source based on polarization maintaining photonic crystal fiber[D], 40-44(2019).
[50] Gorman A, Fletcher-Holmes D W, Harvey A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 18, 5602-5608(2010).
[51] Lü M B, Wang P. Ray tracing in Rochon prisms with absorption[J]. Optics Express, 25, 14676-14690(2017).
[52] Li L, Dobrowolski J A. High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle[J]. Applied Optics, 39, 2754-2771(2000).
[53] Zheng J J, Zhou C H, Feng J J et al. A metal-mirror-based reflecting polarizing beam splitter[J]. Journal of Optics A, 11, 015710(2009).
[54] Li C Y, Wu Y M, Gao L M et al. Analysis of extinction ratio of a Glan-Taylor prism[J]. Infrared and Laser Engineering, 43, 173-177(2014).
[55] Li J S, Zhan Y Z, Zhang L D. Target polarization detection method of combined Wollaston prism group[J]. Infrared and Laser Engineering, 50, 20210339(2021).
[56] Kudenov M W, Miskiewicz M, Sanders N et al. Achromatic Wollaston prism beam splitter using polarization gratings[J]. Optics Letters, 41, 4461-4463(2016).
Get Citation
Copy Citation Text
Bo Li, Shengping Chen, Jingsui Li, Jiaxin Song, Rui Song, Kai Han. Review of Linearly Polarized Supercontinuum[J]. Acta Optica Sinica, 2023, 43(17): 1719003
Category: Nonlinear Optics
Received: May. 4, 2023
Accepted: Jul. 12, 2023
Published Online: Sep. 14, 2023
The Author Email: Chen Shengping (chespn@163.com)