Chinese Journal of Lasers, Volume. 47, Issue 2, 207015(2020)
Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke
[1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[2] Fercher F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).
[3] Li P, Yang S S, Ding Z H et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 027011(2018).
[4] Leitgeb R A, Drexler W, Unterhuber A et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 12, 2156-2165(2004).
[5] Yun S. Tearney G,de Boer J, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).
[6] Adler D C, Huber R, Fujimoto J G. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers[J]. Optics Letters, 32, 626-628(2007).
[7] Zhao Y H, Chen Z P, Saxer C et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 25, 114-116(2000).
[8] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography: a review[Invited][J]. Biomedical Optics Express, 8, 1838-1873(2017).
[9] Faber D J, Aalders M C G et al. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography[J]. Optics Express, 12, 4353-4365(2004).
[10] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).
[11] Faber D J, Mik E G. Aalders M C G, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography[J]. Optics Letters, 30, 1015-1017(2005).
[12] Meyer E P, Ulmann-Schuler A, Staufenbiel M et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease[J]. Proceedings of the National Academy of Sciences, 105, 3587-3592(2008).
[13] Vakoc B J, Lanning R M, Tyrrell J A et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 15, 1219-1223(2009).
[14] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 307, 58-62(2005).
[15] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases[J]. Nature, 407, 249-257(2000).
[16] Lü X Y, Ai M. Research advance in clinical application of optical coherence tomography angiography in macular diseases[J]. Recent Advances in Ophthalmology, 39, 94-97(2019).
[17] Srinivasan V J, Mandeville E T, Can A et al. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke[J]. PLoS One, 8, e71478(2013).
[18] Ding H J, Liu K Z, Yang S S et al. Real-time dynamic recording of cerebral cortical vascular embolization and regeneration in rats[J]. Acta Physiologica Sinica, 71, 581-587(2019).
[19] Nishidate I, Mizushima C, Yoshida K et al. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression[J]. Journal of Biomedical Optics, 20, 027003(2015).
[20] Baran U, Li Y D, Wang R K. In vivo tissue injury mapping using optical coherence tomography based methods[J]. Applied Optics, 54, 6448-6453(2015).
[21] Yang S S, Liu K Z, Ding H J et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow & Metabolism, 39, 1381-1393(2019).
[22] Kut C, Chaichana K L, Xi J F et al. 7(292): 292ra100[J].
[23] Xu C Y, Schmitt J M, Carlier S G et al. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography[J]. Journal of Biomedical Optics, 13, 034003(2008).
[24] Yang Y, Wang T H, Biswal N C et al. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue[J]. Journal of Biomedical Optics, 16, 090504(2011).
[25] Gong P J. McLaughlin R A, Liew Y M, et al. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking[J]. Journal of Biomedical Optics, 19, 021111(2014).
[26] Es'Haghian S, Gong P J, Chin L et al. Investigation of optical attenuation imaging using optical coherence tomography for monitoring of scars undergoing fractional laser treatment[J]. Journal of Biophotonics, 10, 511-522(2017).
[27] Fingler J, Schwartz D, Yang C et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 15, 12636-12653(2007).
[28] Yu L F, Chen Z P. Doppler variance imaging for three-dimensional retina and choroid angiography[J]. Journal of Biomedical Optics, 15, 016029(2010).
[29] Makita S, Hong Y, Yamanari M et al. Optical coherence angiography[J]. Optics Express, 14, 7821-7840(2006).
[30] Mariampillai A, Standish B A, Moriyama E H et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008).
[32] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).
[33] Wang R K, An L, Francis P et al. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography[J]. Optics Letters, 35, 1467-1469(2010).
[34] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 13, 5234-5239(2005).
[35] Guo L, Li P, Pan C et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 18, 025301(2016).
[36] Cheng Y X, Guo L, Pan C et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 20, 116004(2015).
[37] Vakoc B J, Tearney G J, Bouma B E. Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography[J]. IEEE Transactions on Medical Imaging, 28, 814-821(2009).
[38] Li P, Cheng Y X, Li P et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 41, 3944-3947(2016).
[39] Li P, Cheng Y X, Zhou L P et al. Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement[J]. Optics Letters, 41, 1058-1061(2016).
[40] Makita S, Kurokawa K, Hong Y J et al. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography[J]. Biomedical Optics Express, 7, 1525-1548(2016).
[41] Braaf B, Donner S, Nam A S et al. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina[J]. Biomedical Optics Express, 9, 486-506(2018).
[42] Huang L Z, Fu Y M, Chen R X et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model[J]. IEEE Transactions on Medical Imaging, 38, 2695-2704(2019).
[43] Zhang A Q, Zhang Q Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015).
[44] Yousefi S, Liu T, Wang R K. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding[J]. Microvascular Research, 97, 37-46(2015).
[46] Li P, Huang Z Y, Yang S S et al. Adaptive classifier allows enhanced flow contrast in OCT angiography using a histogram-based motion threshold and 3D Hessian analysis-based shape filtering[J]. Optics Letters, 42, 4816-4819(2017).
[48] Yang S S, Liu K Z, Yao L et al. Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model[J]. Biomedical Optics Express, 10, 6258-6271(2019).
[49] Brott T, Bogousslavsky J. Treatment of acute ischemic stroke[J]. New England Journal of Medicine, 343, 710-722(2000).
[51] Wang X W, Li H L, Ding S. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia[J]. Scientific Reports, 6, 32416(2016).
[52] Barone F C, Kilgore K S. Role of inflammation and cellular stress in brain injury and central nervous system diseases[J]. Clinical Neuroscience Research, 6, 329-356(2006).
[53] Woodruff T M, Thundyil J, Tang S C et al. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke[J]. Molecular Neurodegeneration, 6, 11(2011).
Get Citation
Copy Citation Text
Yang Shanshan, Yao Lin, Liu Kaiyuan, Li Peng. Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke[J]. Chinese Journal of Lasers, 2020, 47(2): 207015
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Peng Li (peng_li@zju.edu.cn)