Chinese Journal of Ship Research, Volume. 17, Issue 4, 12(2022)

Ship trajectory tracking based on IMM-SCKF algorithm

Jiaxuan YANG1,2, Baiguo CHEN1,2, and Lingqi MA1,2
Author Affiliations
  • 1Navigation College, Dalian Maritime University, Dalian 116026, China
  • 2Key Laboratory of Navigation Safety Guarantee of Liaoning Province, Dalian 116026, China
  • show less
    Figures & Tables(16)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Setting of experimental initialization parameters

      View table
      View in Article

      Table 1. Setting of experimental initialization parameters

      参数CVMCSMCTM改进的CTM
      ${{\boldsymbol{Q}}}$$ q=0.25 $${a}_{\mathrm{m}\mathrm{a}\mathrm{x} }=0.01\;\mathrm{m}/{\mathrm{s} }^{2}$$ q=0.01 $$ q=0.01 $
      ${{\boldsymbol{R}}}$${\sigma }_{x}={\sigma }_{y}=10\;\mathrm{m}$
      ${{{\boldsymbol{P}}} }_{0}$${{{\boldsymbol{I}}} }_{4\times 4}$${{{\boldsymbol{I}}} }_{6\times 6}$${{{\boldsymbol{I}}} }_{4\times 4}$${{{\boldsymbol{I}}} }_{4\times 4}$
      $ \Delta t $/$ \mathrm{s} $$ 10 $
    • Table 2. ARMSEs of local position data at different time periods in Trajectory 4 using Combined Model 1 and single motion model

      View table
      View in Article

      Table 2. ARMSEs of local position data at different time periods in Trajectory 4 using Combined Model 1 and single motion model

      模型ARSME/m
      0~120 s120~220 s220~370 s
      CVM7.536 127.569 67.514 9
      CTM30.211 07.464 028.728 8
      组合模型16.780 05.509 05.333 9
    • Table 3. ARMSEs of position data at different time periods in Trajectory 5 using Combined Model 1 and 2

      View table
      View in Article

      Table 3. ARMSEs of position data at different time periods in Trajectory 5 using Combined Model 1 and 2

      模型ARMSE/m
      0~250 s250~400 s400~600 s600~770 s
      组合模型16.12445.75528.67275.7986
      组合模型25.31354.95985.17755.2239
    • Table 4. ARMSEs of position data in Trajectory 6 using three combined models with Kalman filtering algorithm

      View table
      View in Article

      Table 4. ARMSEs of position data in Trajectory 6 using three combined models with Kalman filtering algorithm

      模型及搭配算法ARMSE/m
      组合模型1+EKF15.693 5
      组合模型1+SCKF10.975 5
      组合模型2+SCKF6.709 8
      组合模型3+SCKF6.148 6
    • Table 5. ARMSEs of position data in the six trajectories using three combined models with SCKF algorithm

      View table
      View in Article

      Table 5. ARMSEs of position data in the six trajectories using three combined models with SCKF algorithm

      模型及搭配算法ARMSE/m
      轨迹1轨迹2轨迹3轨迹4轨迹5轨迹6
      组合模型1+SCKF6.131 26.277 37.880 96.140 86.829 811.525 2
      组合模型2+SCKF6.130 15.947 27.542 75.736 15.395 27.290 2
      组合模型3+SCKF5.757 05.590 96.689 45.659 25.349 96.632 9
    Tools

    Get Citation

    Copy Citation Text

    Jiaxuan YANG, Baiguo CHEN, Lingqi MA. Ship trajectory tracking based on IMM-SCKF algorithm[J]. Chinese Journal of Ship Research, 2022, 17(4): 12

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 3, 2021

    Accepted: --

    Published Online: Mar. 26, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02692

    Topics