Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0125001(2024)

Research Progress in Full-Color Display of Micro-Light-Emitting Diode (Invited)

Lixiang Huang1、†, Bing Han1、†, Long Yan1, Xiangjie Zhao1, Youliang Zhu1,2, Xiao Lin1,2, Ziwei Li1、*, and Anlian Pan1、**
Author Affiliations
  • 1Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, China
  • 2Innovision Technology (Suzhou) Co., Ltd., Suzhou 215011, Jiangsu, China
  • show less
    References(70)

    [1] Lee V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Information Display, 32, 16-23(2016).

    [2] Nie J Y, Zhang Z, Chen K J et al. Systematic study on size and temporal dependence of micro-LED arrays for display applications[J]. Photonics Research, 11, 549-557(2023).

    [3] Liu X H, Sun Y, Malhotra Y et al. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs[J]. Photonics Research, 10, 587-593(2022).

    [4] Wu Y F, Ma J S, Su P et al. Full-color realization of micro-LED displays[J]. Nanomaterials, 10, 2482(2020).

    [5] Kim D S, Kim S Y, Jung J H et al. High-quality imaging micro-LED display based on quantum dot CSP technology[J]. Electronic Imaging, 30, 1851-1855(2018).

    [6] Liu Z J, Lin C H, Hyun B R et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Science & Applications, 9, 83(2020).

    [7] Saeedi E, Kim S S, Parviz B A. Self-assembled inorganic micro-display on plastic[C], 755-758(2008).

    [8] Park S C, Fang J, Biswas S et al. A first implementation of an automated reel-to-reel fluidic self-assembly machine[J]. Advanced Materials, 26, 5942-5949(2014).

    [9] Sharma B K, Jang B, Lee J E et al. Load-controlled roll transfer of oxide transistors for stretchable electronics[J]. Advanced Functional Materials, 23, 2024-2032(2013).

    [11] Chen F, Bian J, Hu J L et al. Mass transfer techniques for large-scale and high-density microLed arrays[J]. International Journal of Extreme Manufacturing, 4, 042005(2022).

    [12] Damilano B, Dussaigne A, Brault J et al. Monolithic white light emitting diodes using a (Ga, In)N/GaN multiple quantum well light converter[J]. Applied Physics Letters, 93, 101117(2008).

    [13] Kang C M, Kang S J, Mun S H et al. Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission[J]. Scientific Reports, 7, 10333(2017).

    [14] Kim B H, Nam S, Oh N et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes[J]. ACS Nano, 10, 4920-4925(2016).

    [15] Gaurav A, Tsai C Y, Wang G W et al. Ultrahigh-resolution full-color micro-LED array with enhanced efficiency based on a color conversion technique[J]. Photonics Research, 11, 925(2023).

    [16] Chen L N, Qin Z Y, Chen S M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities[J]. Small Methods, 6, 2101090(2022).

    [17] Baek G W, Kim Y J, Lee M et al. Progress in the development of active-matrix quantum-dot light-emitting diodes driven by non-Si thin-film transistors[J]. Materials, 15, 8511(2022).

    [18] Gou F W, Hsiang E L, Tan G J et al. High performance color-converted micro-LED displays[J]. Journal of the Society for Information Display, 27, 199-206(2019).

    [19] Meitl M A, Zhu Z T, Kumar V et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 5, 33-38(2006).

    [20] Miller R, Marinov V, Swenson O et al. Noncontact selective laser-assisted placement of thinned semiconductor dice[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 971-978(2012).

    [21] Park S I, Xiong Y J, Kim R H et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays[J]. Science, 325, 977-981(2009).

    [22] Kim S, Wu J, Carlson A et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 17095-17100(2010).

    [23] Lee M H, Lim N, Ruebusch D J et al. Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing[J]. Nano Letters, 11, 3425-3430(2011).

    [24] Choi M, Jang B, Lee W et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing[J]. Advanced Functional Materials, 27, 1606005(2017).

    [25] Park S C, Biswas S, Fang J et al. Millimeter thin and rubber-like solid-state lighting modules fabricated using roll-to-roll fluidic self-assembly and lamination[J]. Advanced Materials, 27, 3661-3668(2015).

    [26] Yang S Y, Carlson A, Cheng H Y et al. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications[J]. Advanced Materials, 24, 2117-2122(2012).

    [27] Ryu J E, Park S, Park Y et al. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays[J]. Advanced Materials, 35, 2204947(2023).

    [28] Marinov V R. 52-4: laser-enabled extremely-high rate technology for µLED assembly[J]. SID Symposium Digest of Technical Papers, 49, 692-695(2018).

    [31] Yeh H J J, Smith J S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates[J]. IEEE Photonics Technology Letters, 6, 706-708(1994).

    [32] Chang W, Kim J, Kim M et al. Concurrent self-assembly of RGB micro-LEDs for next-generation displays[J]. Nature, 617, 287-291(2023).

    [33] Lee D, Cho S, Park C et al. Fluidic self-assembly for micro-LED displays by controlled viscosity[J]. Nature, 619, 755-760(2023).

    [34] Park H K, Yoon S W, Eo Y J et al. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly[J]. Scientific Reports, 6, 28312(2016).

    [35] Eo Y J, Yoo G Y, Kang H et al. Enhanced DC-operated electroluminescence of forwardly aligned p/MQW/n InGaN nanorod LEDs via DC offset-AC dielectrophoresis[J]. ACS Applied Materials & Interfaces, 9, 37912-37920(2017).

    [36] Hwangbo S, Hu L, Hoang A T et al. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor[J]. Nature Nanotechnology, 17, 500-506(2022).

    [37] Hong Y J, Lee C H, Yoon A et al. Visible-color-tunable light-emitting diodes[J]. Advanced Materials, 23, 3284-3288(2011).

    [38] Wang R J, Nguyen H P T, Connie A T et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon[J]. Optics Express, 22, A1768-A1775(2014).

    [39] Wang R J, Ra Y H, Wu Y P et al. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire[J]. Proceedings of SPIE, 9748, 97481S(2016).

    [40] Bui H Q T, Velpula R T, Jain B et al. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: a promising candidate for next generation micro displays[J]. Micromachines, 10, 492(2019).

    [41] Liu X H, Wu Y P, Malhotra Y et al. Submicron full-color LED pixels for microdisplays and micro-LED main displays[J]. Journal of the Society for Information Display, 28, 410-417(2020).

    [42] Damilano B, Demolon P, Brault J et al. Blue-green and white color tuning of monolithic light emitting diodes[J]. Journal of Applied Physics, 108, 073115(2010).

    [43] Chun J, Lee K J, Leem Y C et al. Vertically stacked color tunable light-emitting diodes fabricated using wafer bonding and transfer printing[J]. ACS Applied Materials & Interfaces, 6, 19482-19487(2014).

    [44] Mun S H, Kang C M, Min J H et al. Highly efficient full-color inorganic LEDs on a single wafer by using multiple adhesive bonding[J]. Advanced Materials Interfaces, 8, 2100300(2021).

    [45] Shin J, Kim H, Sundaram S et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer[J]. Nature, 614, 81-87(2023).

    [46] Li P A, Zhang X, Qi L H et al. Full-color micro-display by heterogeneous integration of InGaN blue/green dual-wavelength and AlGaInP red LEDs[J]. Optics Express, 30, 23499-23510(2022).

    [47] Qi L H, Li P A, Zhang X et al. Monolithic full-color active-matrix micro-LED micro-display using InGaN/AlGaInP heterogeneous integration[J]. Light: Science & Applications, 12, 258(2023).

    [48] Zhuang Z, Iida D, Ohkawa K. InGaN-based red light-emitting diodes: from traditional to micro-LEDs[J]. Japanese Journal of Applied Physics, 61, SA0809(2022).

    [49] Qi L H, Zhang X, Chong W C et al. Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay[J]. Photonics Research, 11, 109-120(2022).

    [50] Huang Y M, Singh K J, Liu A C et al. Advances in quantum-dot-based displays[J]. Nanomaterials, 10, 1327(2020).

    [51] Chu S Y, Wang H Y, Lee C T et al. Improved color purity of monolithic full color micro-LEDs using distributed Bragg reflector and blue light absorption material[J]. Coatings, 10, 436(2020).

    [52] Bae J, Shin Y, Yoo H et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit[J]. Nature Communications, 13, 1862(2022).

    [53] Zhu L C, Tao J, Li P Y et al. Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays[J]. Nanoscale Advances, 5, 2743-2747(2023).

    [54] Quesnel E, Suhm A, Consonni M et al. Experimental and theoretical investigation of 2D nanoplatelet-based conversion layers for color LED microdisplays[J]. Optics Express, 29, 20498-20513(2021).

    [55] Yin Y M, Hu Z P, Ali M U et al. Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-converted micro-LED display with a 122% NTSC gamut[J]. Light: Advanced Manufacturing, 3, 36(2022).

    [56] Kim H M, Ryu M, Cha J H J et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display[J]. Journal of the Society for Information Display, 27, 347-353(2019).

    [57] Chen S W H, Huang Y M, Singh K J et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist[J]. Photonics Research, 8, 630-636(2020).

    [58] Tian W Y, Dou L, Jin Z et al. Full-color micro-LED displays with cadmium-free quantum dots patterned by photolithography technology[J]. Applied Optics, 59, 11112-11122(2020).

    [59] Zhang X, Qi L H, Chong W C et al. Active matrix monolithic micro-LED full-color micro-display[J]. Journal of the Society for Information Display, 29, 47-56(2021).

    [60] Li P A, Zhang X, Li Y F et al. Monolithic full-color microdisplay using patterned quantum dot photoresist on dual-wavelength LED epilayers[J]. Journal of the Society for Information Display, 29, 157-165(2021).

    [61] Yang L L, Huang J H, Xu Z Y et al. Revealing atomic-level surface passivation of PbI2-reconditioned red perovskite quantum dots[J]. Advanced Optical Materials, 11, 2202561(2023).

    [62] Li Z W, Wang Y J, Li L H et al. Low thresholds and tunable modes in plasmon-assisted perovskite microlasers[J]. Advanced Optical Materials, 10, 2102777(2022).

    [63] Yang L L, Huang J H, Tan Y K et al. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices[J]. Materials Horizons, 10, 1969-1989(2023).

    [64] Liang J, Wang K, Du Y X et al. Screen-overprinted perovskite RGB microdisk arrays based on wet-solute-chemical dynamics for full-color laser displays[J]. ACS Applied Materials & Interfaces, 14, 1774-1782(2022).

    [65] Sun W C, Li F, Tao J et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 14, 5994-5998(2022).

    [66] Han H V, Lin H Y, Lin C C et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology[J]. Optics Express, 23, 32504-32515(2015).

    [67] Li Y, Tao J, Wang Q et al. Microfluidics-based quantum dot color conversion layers for full-color micro-LED display[J]. Applied Physics Letters, 118, 173501(2021).

    [68] Qin F, Liu C, Wu W H et al. Inkjet printed quantum dots color conversion layers for full-color micro-led displays[J]. Electronic Materials Letters, 19, 19-28(2022).

    [69] Yin Y M, Hu Z P, Ali M U et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers[J]. Advanced Materials Technologies, 5, 2000251(2020).

    [70] Li P Y, Tao J, Zhao Y Z et al. Flexible quantum-dot color-conversion layer based on microfluidics for full-color micro-LEDs[J]. Micromachines, 13, 448(2022).

    Tools

    Get Citation

    Copy Citation Text

    Lixiang Huang, Bing Han, Long Yan, Xiangjie Zhao, Youliang Zhu, Xiao Lin, Ziwei Li, Anlian Pan. Research Progress in Full-Color Display of Micro-Light-Emitting Diode (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0125001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Nov. 29, 2023

    Accepted: Dec. 15, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Ziwei Li (ziwei_li@hnu.edu.cn), Anlian Pan (anlian.pan@hnu.edu.cn)

    DOI:10.3788/LOP232583

    CSTR:32186.14.LOP232583

    Topics