Laser & Infrared, Volume. 55, Issue 6, 861(2025)

Improved GICP algorithm based on geometry and intensity constraint registration

XU Shi-yun1, SONG Wen-ji1, ZHANG Bo-qiang2, LIU Bo-xiang1, and GAO Xiang-chuan1、*
Author Affiliations
  • 1College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • show less
    References(13)

    [6] [6] Zhang J, Singh S L. Lidar odometry and mapping in real-time[EB/OL]. (2024-07-12). https://www.semanticscholar.org/paper/LOAM%3A-Lidar-Odometry-and-Mapping-in-Real-time-Zhang-Singh/4d0fc815dced9db3954ed21060e9894e1555ee3d.

    [7] [7] Biber P, Strasser W. The normal distributions transform: a new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453). Las Vegas: IEEE, 2003: 2743-2748.

    [8] [8] Besl P J, McKay N D. Method for registration of 3-D shapes[C]//Sensor Fusion IV: Control Paradigms and Data Structures. Boston: SPIE: 586-606.

    [9] [9] Chen Y, Medioni G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155.

    [10] [10] Yao Z W, Zhao Q X, Li X F, et al. Point cloud registration algorithm based on curvature feature similarity[J]. Measurement, 2021, 177: 109274.

    [11] [11] Segal A, Hhnel D, Thrun S. Generalized-icp[C]//Robotics: Science and Systems. Seattle, 2009.

    [12] [12] Koide K, Yokozuka M, Oishi S, et al. Voxelized GICP for fast and accurate 3D point cloud registration[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Xi′an: IEEE, 2021: 11054-11059.

    [13] [13] Chen S B, Ma H, Jiang C H, et al. NDT-LOAM: a real-time lidar odometry and mapping with weighted NDT and LFA[J]. IEEE Sensors Journal, 2022, 22(4): 3660-3671.

    [14] [14] Demantk J, Mallet C, David N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38(5): 97-102.

    [15] [15] Vlaminck M, Luong H, Philips W. Surface-Based GICP[C]//2018 15th Conference on Computer and Robot Vision (CRV). Toronto: IEEE, 2018: 262-268.

    [16] [16] He L, Li W, Guan Y S, et al. IGICP: intensity and geometry enhanced LiDAR odometry[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 541-554.

    [17] [17] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.

    [18] [18] Grupp M. evo: python package for the evaluation of odometry and slam[EB/OL]. https//gitcode.com/gh_mirrors/ev/evo.

    Tools

    Get Citation

    Copy Citation Text

    XU Shi-yun, SONG Wen-ji, ZHANG Bo-qiang, LIU Bo-xiang, GAO Xiang-chuan. Improved GICP algorithm based on geometry and intensity constraint registration[J]. Laser & Infrared, 2025, 55(6): 861

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 11, 2024

    Accepted: Jul. 30, 2025

    Published Online: Jul. 30, 2025

    The Author Email: GAO Xiang-chuan (iexcgao@zzu.edu.cn)

    DOI:10.3969/j.issn.1001-5078.2025.06.005

    Topics