Acta Optica Sinica, Volume. 42, Issue 10, 1031001(2022)

Anti-Reflection Surface of Mid-Infrared Bionic Composite Micro-Nano Structure

Ziye Ma, Mingzhao Ouyang*, Yuegang Fu, Jinshuang Wu, Jianhong Zhou, Hang Ren, and Ziqiang Zhang
Author Affiliations
  • Key Laboratory of Optical Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    References(41)

    [1] Lin H, Ouyang M Z, Chen B X et al. Design and fabrication of moth-eye subwavelength structure with a waist on silicon for broadband and wide-angle anti-reflection property[J]. Coatings, 8, 360(2018).

    [2] Lin H, Fu Y G, Ouyang M Z et al. Design and analysis of moth-eye antireflective metasurface structure with broadband and wide-angle[J]. Chinese Journal of Lasers, 46, 0113002(2019).

    [3] Liu X J, Da Y, Xuan Y M. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells[J]. Optics Express, 25, A824-A839(2017).

    [4] Zhang C P, Yi P Y, Peng L F et al. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection[J]. Applied Optics, 56, 2901-2907(2017).

    [5] Dong L T, Zhang Z A, Wang L et al. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications[J]. Applied Optics, 58, 6706-6712(2019).

    [6] Raut H K, Ganesh V A, Nair A S et al. Anti-reflective coatings: a critical, in-depth review[J]. Energy & Environmental Science, 4, 3779-3804(2011).

    [7] Fei L, Cui Y, Wan D Y et al. Design and fabrication of composite structures in ZnSe providing broadband mid-infrared anti-reflection[J]. Optical Materials, 84, 722-727(2018).

    [8] Xu H B, Gong L T, Zhang S C et al. Biomimetic moth-eye anti-reflective poly-(methyl methacrylate) nanostructural coating[J]. Journal of Bionic Engineering, 16, 1030-1038(2019).

    [9] Fu Y G, Ouyang M Z, Wu J S. Anti-reflective micro-nano surface technology based on “moth-eye” inspiration[J]. Flight Control & Detection, 1, 1-10(2018).

    [10] Shen S T, Li Y, Fu Y G et al. Anti-reflection characteristics of the surface of double-cycle nested micro-structures[J]. Infrared and Laser Engineering, 48, 0521002(2019).

    [11] Guo X D, Dong T T, Fu Y G et al. Development of bionic moth-eye anti-reflective conical micro-nano structure[J]. Infrared and Laser Engineering, 46, 0910002(2017).

    [12] Dong T T, Chen C, Xiong T et al. Research on bionic moth-eye antireflective micro-nano structure of diffraction characteristics[J]. Optics & Optoelectronic Technology, 15, 57-60(2017).

    [13] Jacobo-Martín A, Hernández J J, Pedraz P et al. Improved thermal stability of antireflective moth-eye topography imprinted on PMMA/TiO2 surface nanocomposites[J]. Nanotechnology, 32, 335302(2021).

    [14] [14] OkabeT, YanoT, YatagawaK, et al., 2021, 242/243: 111559.

    [15] Lan J, Chen J S, Xiao Z G et al. Simulation of broadband anti-reflective and bud-shaped moth-eye structure[J]. Acta Optica Sinica, 41, 1416001(2021).

    [16] Fu X H, Lin X M, Zhang G et al. Development of infrared wide band polarizing elements with subwavelength metal wire grids[J]. Chinese Journal of Lasers, 48, 0903002(2021).

    [17] Song W G, Li H M, Gao S L et al. Subwavelength self-imaging in cascaded waveguide arrays[J]. Advanced Photonics, 2, 036001(2020).

    [18] Zhang Y F, Hu X H, Wang S W et al. High transparent mid-infrared silicon “window” decorated with amorphous photonic structures fabricated by facile phase separation[J]. Optics Express, 26, 18734-18748(2018).

    [19] Ryu Y, Kim K. Fabrication of antireflective hierarchical TiO2 nanostructures by moth-eye patterning of anodic anodized nanotubes[J]. Optics Express, 26, 31490-31499(2018).

    [20] Jang H J, Kim Y J, Yoo Y J et al. Double-sided anti-reflection nanostructures on optical convex lenses for imaging applications[J]. Coatings, 9, 404(2019).

    [21] Kraus M, Diao Z L, Weishaupt K et al. Combined ‘moth-eye’ structured and graded index-layer anti-reflecting coating for high index glasses[J]. Optics Express, 27, 34655-34664(2019).

    [22] Murthy S, Lotz M R, Feidenhans’l N et al. Fabrication of large area broadband and omnidirectional antireflective transparent foils by roll-to-roll extrusion coating[J]. Macromolecular Materials and Engineering, 302, 1700027(2017).

    [23] Jing X F, Chu C F, Li C X et al. Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective moth-eye-like microstructure[J]. Optics Express, 27, 21766-21777(2019).

    [24] Wen C C, Dong T T, Fu Y G et al. Simulation and optimization of bionic moth-eye antireflective microstructures with periodic Gaussian top surface array in mid infrared range[J]. Chinee Journal of Vacuum Science and Technology, 37, 538-543(2017).

    [25] Liu X G, Wang Y F. Shape optimization of a moth-eye structure for omnidirectional and broadband antireflection[J]. Japanese Journal of Applied Physics, 58, 060904(2019).

    [26] Zhang H Y, Cui Y, Sun Y et al. Fabrication of environmentally adaptive mid-infrared broadband antireflection components[J]. Chinese Journal of Lasers, 47, 0301006(2020).

    [27] Dong T T, Fu Y G, Chen C et al. Design and manufacture of columned antireflective periodic microstructures on the surface of Si substrate[J]. Infrared and Laser Engineering, 45, 0622002(2016).

    [28] Wu J S, Ouyang M Z, Zhao Y et al. Mushroom-structured silicon metasurface for broadband superabsorption from UV to NIR[J]. Optical Materials, 121, 111504(2021).

    [29] Dong T T, Fu Y G, Chen C et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 36, 0522004(2016).

    [30] Cheng H J, Dong M, Tan Q W et al. Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium[J]. Chinese Optics Letters, 17, 122401(2019).

    [31] Tan G J, Lee J H, Lan Y H et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 4, 678-683(2017).

    [32] Ducros C, Brodu A, Lorin G et al. Optical performances of antireflective moth-eye structures. Comparison with standard vacuum antireflection coatings for application to outdoor lighting LEDs[J]. Surface and Coatings Technology, 379, 125044(2019).

    [33] Yoo Y J, Kim Y J, Kim S Y et al. Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials[J]. Optical Materials Express, 9, 4178-4186(2019).

    [34] Fu X H, Huang H Y, Zhang J et al. Anti-reflection protective film of chalcogenide glass substrate and its environmental adaptability[J]. Acta Optica Sinica, 40, 2131002(2020).

    [35] Wan Z H, Cui E K, Yu S T et al. Effects of reactive ion etching parameters on etching rate and surface roughness of 4H-SiC[J]. Laser & Optoelectronics Progress, 58, 1922002(2021).

    [36] Chen L S, Qiao W, Ye Y et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 41, 0823018(2021).

    [37] Zou H, Zhang H, Huang X et al. Influence of substrate films for photo spacer elastic recovery rate[J]. Chinese Journal of Liquid Crystals and Displays, 35, 1240-1247(2020).

    [38] Zhang P, Huang C Z, Zhu H T et al. The research of tool wear criterion in micro cutting using the elastic recovery ratio of high-strength elastic alloy 3J33B[J]. The International Journal of Advanced Manufacturing Technology, 114, 1767-1776(2021).

    [39] Zhang J, Wang W X, Zhang T T et al. Mechanical characterization of the plastic deformation behavior of AZ31 magnesium alloy processed through spinning using nanoindentation[J]. Transactions of the Indian Institute of Metals, 74, 1349-1359(2021).

    [40] Fu Y, Lu Y, Yang X T et al. Effects of deposition temperature on structure and tribological properties of hydrogenated carbon films on steel balls[J]. China Surface Engineering, 31, 113-121(2018).

    [41] Liu L H, Liu Y P, Ma J Y et al. In-situ nanoindentation investigation of mechanical properties of Al2O3 ultra-thin nanofilm grown by atomic layer deposition[J]. Materials Reports, 33, 3026-3030(2019).

    Tools

    Get Citation

    Copy Citation Text

    Ziye Ma, Mingzhao Ouyang, Yuegang Fu, Jinshuang Wu, Jianhong Zhou, Hang Ren, Ziqiang Zhang. Anti-Reflection Surface of Mid-Infrared Bionic Composite Micro-Nano Structure[J]. Acta Optica Sinica, 2022, 42(10): 1031001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Sep. 28, 2021

    Accepted: Dec. 6, 2021

    Published Online: May. 10, 2022

    The Author Email: Ouyang Mingzhao (oymz68@163.com)

    DOI:10.3788/AOS202242.1031001

    Topics