Acta Optica Sinica, Volume. 44, Issue 18, 1800006(2024)

Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)

Chuyao Luo1, Xu Huang2, Jiazheng Li2, Xutao Li2, and Yunming Ye2、*
Author Affiliations
  • 1School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • 2School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • show less
    References(104)

    [1] Liu C, Li J, Li B et al. A review of cloud property retrieval algorithms and product developments for fengyun satellite spectral imagers[J]. Acta Optica Sinica, 44, 1800002(2024).

    [2] He J, Yuan Q Q, Li J. Generalized spectral super-resolution for multispectral satellite imagings[J]. Acta Photonica Sinica, 52, 0210002(2023).

    [4] Schott J R, Salvaggio C, Volchok W J. Radiometric scene normalization using pseudoinvariant features[J]. Remote Sensing of Environment, 26, 1-16(1988).

    [6] Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 16, 463-478(2007).

    [7] Li X T, Ye Z Z, Ye Y M et al. A convolutional neural network-based relative radiometric calibration method[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5403611(2007).

    [9] Sun L, Yang X, Jia S F et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 41, 1349-1371(2020).

    [10] Sun R X, Fan R S. Multi-feature fusion image cloud detection based on SVM[J]. Geomatics & Spatial Information Technology, 41, 153-156, 160(2018).

    [13] Chen Y, Qiu Q, Qu M et al. Research on cloud detection method under arctic ice environment based on FY-3D MERSI-II[J]. Geospatial Information, 18, 10-14, 4(2020).

    [14] Jia L L, Wang X Q, Wang F. Cloud detection based on band operation texture feature for GF-1 multispectral data[J]. Remote Sensing Information, 33, 62-68(2018).

    [16] Zhang S N, Zhang H, Zhang B et al. An improved fmask algorithm for cloud detection applied to hyperspectral satellite[J]. Acta Optica Sinica, 43, 2428009(2023).

    [17] Ishida H, Oishi Y, Morita K et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment, 205, 390-407(2018).

    [19] Wei J, Li Z Q, Peng Y R et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison[J]. Atmospheric Environment, 201, 428-440(2019).

    [20] Fan X, Kong J L, Zhong Y L et al. Cloud detection of remote sensing images based on XGBoost algorithm[J]. Remote Sensing Technology and Application, 38, 156-162(2023).

    [22] Yang J Y, Guo J H, Yue H J et al. CDnet: CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 6195-6211(2019).

    [26] Peng L K, Liu L C, Chen X H et al. Generalization ability of cloud detection network for satellite imagery based on DeepLabv3+[J]. National Remote Sensing Bulletin, 25, 1169-1186(2021).

    [29] Chen Z H, Li X T, Ye Y M[P]. A remote sensing image cloud detection method.

    [31] Guo Y, Cao X, Liu B et al. Cloud detection for satellite imagery using attention-based U-Net convolutional neural network[J]. Symmetry, 12, 1056(2020).

    [34] Cao H, Wang Y Y, Chen J, Karlinsky L, Michaeli T, Nishino K. et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[M]. Computer vision-ECCV 2022 workshops, 13803, 205-218(2023).

    [36] Li X, Yang X F, Li X T et al. GCDB-UNet: a novel robust cloud detection approach for remote sensing images[J]. Knowledge-Based Systems, 238, 107890(2022).

    [43] Germann U, Zawadzki I. Scale dependence of the predictability of precipitation from continental radar images. part II: probability forecasts[J]. Journal of Applied Meteorology, 43, 74-89(2004).

    [44] Cheung P, Yeung H Y. Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong[C], 6-10(2012).

    [45] Sakaino H. Spatio-temporal image pattern prediction method based on a physical model with time-varying optical flow[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 3023-3036(2013).

    [50] Wang Y B, Zhang J J, Zhu H Y et al. Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C], 9146-9154.

    [56] Tian L, Li X T, Ye Y M et al. A generative adversarial gated recurrent unit model for precipitation nowcasting[J]. IEEE Geoscience and Remote Sensing Letters, 17, 601-605(2020).

    [57] Xie P F, Li X T, Ji X Y et al. An energy-based generative adversarial forecaster for radar echo map extrapolation[J]. IEEE Geoscience and Remote Sensing Letters, 19, 3500505(2020).

    [59] Zhang Y C, Long M S, Chen K Y et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 619, 526-532(2023).

    [60] Dai K, Li X T, Ye Y M et al. MSTCGAN: multiscale time conditional generative adversarial network for long-term satellite image sequence prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4108516(2022).

    [69] Liu K W, He J Y, Chen H N. Precipitation retrieval from Fengyun-3D microwave humidity and temperature sounder data using machine learning[J]. Remote Sensing, 14, 848(2022).

    [71] Lazri M, Labadi K, Brucker J M et al. Improving satellite rainfall estimation from MSG data in Northern Algeria by using a multi-classifier model based on machine learning[J]. Journal of Hydrology, 584, 124705(2020).

    [72] Hirose H, Shige S, Yamamoto M K et al. High temporal rainfall estimations from himawari-8 multiband observations using the random-forest machine-learning method[J]. Journal of the Meteorological Society of Japan, 97, 689-710(2019).

    [74] Mugnai A, Smith E A, Tripoli G J et al. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations[J]. Natural Hazards and Earth System Sciences, 13, 887-912(2013).

    [77] Chen H N, Sun L Y, Cifelli R et al. Deep learning for bias correction of satellite retrievals of orographic precipitation[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4104611(2022).

    [81] Yi L, Gao Z Y, Shen Z H et al. Precipitation estimation based on infrared data with a spherical convolutional neural network[J]. Journal of Hydrometeorology, 24, 743-760(2023).

    [83] Wang Z Y, Li X T, Lin K H et al. Multiscale and multilevel feature fusion network for quantitative precipitation estimation with passive microwave[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4205916(2024).

    [87] Li J X, Wang C, Wang S G et al. Gaofen-3 sea ice detection based on deep learning[C], 933-939(2017).

    [90] Boulze H, Korosov A, Brajard J. Classification of sea ice types in sentinel-1 SAR data using convolutional neural networks[J]. Remote Sensing, 12, 2165(2020).

    [95] Balasooriya N, Dowden B, Chen J et al. In-situ sea ice detection using DeepLabv3 semantic segmentation[C], 1-7(2021).

    [96] Ren Y B, Li X F, Yang X F et al. Development of a dual-attention U-net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 4010205(1068).

    [97] Yu H, Tian Z X, Li C H. Sea ice classification from Sentinel-1 data[C], 790-793.

    Tools

    Get Citation

    Copy Citation Text

    Chuyao Luo, Xu Huang, Jiazheng Li, Xutao Li, Yunming Ye. Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 17, 2024

    Accepted: Aug. 21, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Ye Yunming (yeyunming@hit.edu.cn)

    DOI:10.3788/AOS241175

    CSTR:32393.14.AOS241175

    Topics