Acta Optica Sinica, Volume. 44, Issue 18, 1800006(2024)
Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)
[1] Liu C, Li J, Li B et al. A review of cloud property retrieval algorithms and product developments for fengyun satellite spectral imagers[J]. Acta Optica Sinica, 44, 1800002(2024).
[2] He J, Yuan Q Q, Li J. Generalized spectral super-resolution for multispectral satellite imagings[J]. Acta Photonica Sinica, 52, 0210002(2023).
[4] Schott J R, Salvaggio C, Volchok W J. Radiometric scene normalization using pseudoinvariant features[J]. Remote Sensing of Environment, 26, 1-16(1988).
[6] Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 16, 463-478(2007).
[7] Li X T, Ye Z Z, Ye Y M et al. A convolutional neural network-based relative radiometric calibration method[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5403611(2007).
[9] Sun L, Yang X, Jia S F et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 41, 1349-1371(2020).
[10] Sun R X, Fan R S. Multi-feature fusion image cloud detection based on SVM[J]. Geomatics & Spatial Information Technology, 41, 153-156, 160(2018).
[13] Chen Y, Qiu Q, Qu M et al. Research on cloud detection method under arctic ice environment based on FY-3D MERSI-II[J]. Geospatial Information, 18, 10-14, 4(2020).
[14] Jia L L, Wang X Q, Wang F. Cloud detection based on band operation texture feature for GF-1 multispectral data[J]. Remote Sensing Information, 33, 62-68(2018).
[16] Zhang S N, Zhang H, Zhang B et al. An improved fmask algorithm for cloud detection applied to hyperspectral satellite[J]. Acta Optica Sinica, 43, 2428009(2023).
[17] Ishida H, Oishi Y, Morita K et al. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions[J]. Remote Sensing of Environment, 205, 390-407(2018).
[19] Wei J, Li Z Q, Peng Y R et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison[J]. Atmospheric Environment, 201, 428-440(2019).
[20] Fan X, Kong J L, Zhong Y L et al. Cloud detection of remote sensing images based on XGBoost algorithm[J]. Remote Sensing Technology and Application, 38, 156-162(2023).
[22] Yang J Y, Guo J H, Yue H J et al. CDnet: CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 6195-6211(2019).
[26] Peng L K, Liu L C, Chen X H et al. Generalization ability of cloud detection network for satellite imagery based on DeepLabv3+[J]. National Remote Sensing Bulletin, 25, 1169-1186(2021).
[29] Chen Z H, Li X T, Ye Y M[P]. A remote sensing image cloud detection method.
[31] Guo Y, Cao X, Liu B et al. Cloud detection for satellite imagery using attention-based U-Net convolutional neural network[J]. Symmetry, 12, 1056(2020).
[34] Cao H, Wang Y Y, Chen J, Karlinsky L, Michaeli T, Nishino K. et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[M]. Computer vision-ECCV 2022 workshops, 13803, 205-218(2023).
[36] Li X, Yang X F, Li X T et al. GCDB-UNet: a novel robust cloud detection approach for remote sensing images[J]. Knowledge-Based Systems, 238, 107890(2022).
[43] Germann U, Zawadzki I. Scale dependence of the predictability of precipitation from continental radar images. part II: probability forecasts[J]. Journal of Applied Meteorology, 43, 74-89(2004).
[44] Cheung P, Yeung H Y. Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong[C], 6-10(2012).
[45] Sakaino H. Spatio-temporal image pattern prediction method based on a physical model with time-varying optical flow[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 3023-3036(2013).
[50] Wang Y B, Zhang J J, Zhu H Y et al. Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C], 9146-9154.
[56] Tian L, Li X T, Ye Y M et al. A generative adversarial gated recurrent unit model for precipitation nowcasting[J]. IEEE Geoscience and Remote Sensing Letters, 17, 601-605(2020).
[57] Xie P F, Li X T, Ji X Y et al. An energy-based generative adversarial forecaster for radar echo map extrapolation[J]. IEEE Geoscience and Remote Sensing Letters, 19, 3500505(2020).
[59] Zhang Y C, Long M S, Chen K Y et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 619, 526-532(2023).
[60] Dai K, Li X T, Ye Y M et al. MSTCGAN: multiscale time conditional generative adversarial network for long-term satellite image sequence prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4108516(2022).
[69] Liu K W, He J Y, Chen H N. Precipitation retrieval from Fengyun-3D microwave humidity and temperature sounder data using machine learning[J]. Remote Sensing, 14, 848(2022).
[71] Lazri M, Labadi K, Brucker J M et al. Improving satellite rainfall estimation from MSG data in Northern Algeria by using a multi-classifier model based on machine learning[J]. Journal of Hydrology, 584, 124705(2020).
[72] Hirose H, Shige S, Yamamoto M K et al. High temporal rainfall estimations from himawari-8 multiband observations using the random-forest machine-learning method[J]. Journal of the Meteorological Society of Japan, 97, 689-710(2019).
[74] Mugnai A, Smith E A, Tripoli G J et al. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations[J]. Natural Hazards and Earth System Sciences, 13, 887-912(2013).
[77] Chen H N, Sun L Y, Cifelli R et al. Deep learning for bias correction of satellite retrievals of orographic precipitation[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4104611(2022).
[81] Yi L, Gao Z Y, Shen Z H et al. Precipitation estimation based on infrared data with a spherical convolutional neural network[J]. Journal of Hydrometeorology, 24, 743-760(2023).
[83] Wang Z Y, Li X T, Lin K H et al. Multiscale and multilevel feature fusion network for quantitative precipitation estimation with passive microwave[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4205916(2024).
[87] Li J X, Wang C, Wang S G et al. Gaofen-3 sea ice detection based on deep learning[C], 933-939(2017).
[90] Boulze H, Korosov A, Brajard J. Classification of sea ice types in sentinel-1 SAR data using convolutional neural networks[J]. Remote Sensing, 12, 2165(2020).
[95] Balasooriya N, Dowden B, Chen J et al. In-situ sea ice detection using DeepLabv3 semantic segmentation[C], 1-7(2021).
[96] Ren Y B, Li X F, Yang X F et al. Development of a dual-attention U-net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 4010205(1068).
[97] Yu H, Tian Z X, Li C H. Sea ice classification from Sentinel-1 data[C], 790-793.
Get Citation
Copy Citation Text
Chuyao Luo, Xu Huang, Jiazheng Li, Xutao Li, Yunming Ye. Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800006
Category: Reviews
Received: Jun. 17, 2024
Accepted: Aug. 21, 2024
Published Online: Sep. 11, 2024
The Author Email: Ye Yunming (yeyunming@hit.edu.cn)
CSTR:32393.14.AOS241175