Acta Optica Sinica, Volume. 44, Issue 18, 1800006(2024)

Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)

Chuyao Luo1, Xu Huang2, Jiazheng Li2, Xutao Li2, and Yunming Ye2、*
Author Affiliations
  • 1School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • 2School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • show less
    Figures & Tables(14)
    Schematic diagram of IR-MAD[6]
    Structure diagram of CNN calibration model[7]
    Calibration results of different methods. (a) Original image; (b) calibration results with MST; (c) calibration results with IR-MAD; (d) calibrate results with CNN deep learning method
    Overview of cloud detection methods for remote sensing satellites
    Framework of STCD-UNet[29]
    Multi-scale time conditional generative adversarial network[60]
    Overview of precipitation retrieval algorithms based on satellite observations
    Vision Transformer-based precipitation retrieval[83]
    Sea ice image segmentation network (MSDA-Net)[100]
    Model performance in different representative scenarios
    • Table 1. Results of intelligent radiation self-calibration experiment

      View table

      Table 1. Results of intelligent radiation self-calibration experiment

      SensorMethodDegradation (absolute difference to MST) /%
      Band 1Band 2Band 6Band 7Band 8Band 9RMSE
      FY-3A VIRRMST16.96 (-)12.74 (-)7.18 (-)33.77 (-)26.98 (-)22.61 (-)-
      IR-MAD[6]15.73 (1.24)10.94 (1.80)5.18 (2.00)33.22 (0.55)28.37 (1.40)23.41 (0.80)1.39
      CNN[7]16.57 (0.40)12.33 (0.41)5.73 (1.45)32.06 (1.71)27.30 (0.32)22.31 (0.30)0.96
      FY-3B VIRRMST23.71 (-)16.53 (-)4.52 (-)35.48 (-)27.54 (-)27.62 (-)-
      IR-MAD[6]21.66 (2.05)14.51 (2.02)4.38 (0.14)37.54 (2.05)29.87 (2.33)27.65 (0.03)0.73
      CNN[7]22.69 (1.02)16.96 (0.43)5.51 (0.99)35.37 (0.12)28.00 (0.47)26.70 (0.92)0.74
      FY-3C VIRRMST16.69 (-)14.89 (-)7.24 (-)19.47 (-)12.10 (-)14.73 (-)-
      IR-MAD[6]11.83 (4.86)10.26 (4.63)5.53 (1.71)18.33 (1.14)11.84 (0.26)12.18 (2.55)3.05
      CNN[7]12.48 (4.23)12.00 (2.89)6.16 (1.08)18.83 (0.64)11.79 (0.31)11.65 (3.08)2.50
    • Table 2. Comparison of experimental results on MERSI dataset

      View table

      Table 2. Comparison of experimental results on MERSI dataset

      MethodJaccardPrecisionRecallF1-scoreMIoUAcc
      FCN[30]87.194.391.993.188.293.8
      U-Net[31]88.895.592.894.189.894.7
      DeepLabv3+[32]87.394.292.393.288.493.9
      SegFormer[33]84.992.890.891.886.192.6
      Swin-Unet[34]91.095.195.495.291.795.8
      ConvUNeXt[35]90.695.695.295.491.495.6
      GCDB-UNet[36]91.197.393.595.491.995.8
      STCD-UNet (ours)92.796.296.296.293.396.6
    • Table 3. Results of satellite cloud image extrapolation methods

      View table

      Table 3. Results of satellite cloud image extrapolation methods

      Model256×256512×512Average
      PSNR MSE MAE GDLPSNRMSEMAEGDLPSNRMSEMAEGDL
      ConvLSTM[46]25.00324.3912.644.7824.28388.6313.984.6424.64356.5113.314.71
      TrajGRU[47]25.01341.3712.934.7223.26604.7916.105.7324.14473.0814.525.23
      PredRNN[48]25.06337.1212.844.8624.12410.6214.674.6424.59373.8713.754.75
      PredRNN++[49]24.75337.3813.334.8424.30369.7614.094.6924.53353.5713.714.77
      MIM[50]24.67329.3513.024.8424.10375.1614.184.7024.39352.2613.604.77
      PhyDNet[53]24.21327.4113.084.8623.26388.5213.884.9323.74357.9713.484.90
      SA-ConvLSTM[52]24.08366.7413.9913.6323.31449.2915.7213.7423.70408.0214.8613.69
      MSTCGAN[60]25.41280.9111.064.6824.33326.2512.964.5324.87303.5812.014.61
    • Table 4. Comparison of indicators for different semantic segmentation models

      View table

      Table 4. Comparison of indicators for different semantic segmentation models

      ModelMIoUFWloUAccJaccardPrecisionRecallFl-score
      U-Net[31]80.181.988.785.489.095.492.2
      ResUNet[101]81.682.489.385.690.194.592.3
      DenseUNet[102]82.883.689.886.790.195.993.0
      DeepLabv3[94]89.990.494.392.294.497.596.0
      DeepLabv3+[32]85.386.091.688.592.195.894.0
      TransUNet[103]85.886.591.689.291.297.694.3
      Swin-Unet[34]86.286.891.989.391.997.094.5
      DAU-Net[96]89.289.794.191.494.896.295.5
      SegFormer[33]89.690.194.091.994.197.595.8
      ConvUNeXt[35]88.188.693.690.593.995.195.0
      VAN[104]89.790.294.391.994.796.995.8
      MSDA-Net (ours)93.093.496.194.596.398.197.2
    Tools

    Get Citation

    Copy Citation Text

    Chuyao Luo, Xu Huang, Jiazheng Li, Xutao Li, Yunming Ye. Intelligent Processing and Applications of Optical Remote Sensing Data from Fengyun Satellites (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 17, 2024

    Accepted: Aug. 21, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Ye Yunming (yeyunming@hit.edu.cn)

    DOI:10.3788/AOS241175

    CSTR:32393.14.AOS241175

    Topics