Optics and Precision Engineering, Volume. 33, Issue 8, 1238(2025)

Spatial adaptation and frequency fusion network for single remote sensing image super-resolution

Yichuan YANG1, Zhongqi MA2, Xinyao ZHOU1, Fujian ZHENG1, and Hong HUANG1、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing4033, China
  • 2Beijing Institute of Space Machinery and Electronics, Beijing100094, China
  • show less
    References(42)

    [1] WU L S, FANG L Y, YUE J et al. Deep bilateral filtering network for point-supervised semantic segmentation in remote sensing images[J]. IEEE Transactions on Image Processing, 31, 7419-7434(2022).

    [2] ZHENG F J, LIN S, ZHOU W et al. A lightweight dual-branch swin transformer for remote sensing scene classification[J]. Remote Sensing, 15, 2865(2023).

    [3] LIU B H, XU C Y, CUI Z et al. Progressive context-dependent inference for object detection in remote sensing imagery[J]. IEEE Transactions on Image Processing, 32, 580-590(2022).

    [4] XIONG J W, LIU F, WANG X Y et al. Siamese transformer-based building change detection in remote sensing images[J]. Sensors, 24, 1268(2024).

    [5] JIA S, WANG Z H, LI Q Q et al. Multiattention generative adversarial network for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5624715(2022).

    [6] 易见兵, 陈俊宽, 曹锋. 轻量级重参数化的遥感图像超分辨率重建网络设计[J]. 光学 精密工程, 32, 268-285(2024).

         YI J B, CHEN J K, CAO F et al. Design of Lightweight re-parameterized remote sensing image super-resolution network[J]. Opt. Precision Eng., 32, 268-285(2024).

    [7] HUANG N B, YANG Y, LIU J J et al. Single-image Super-Resolution for Remote Sensing Data Using Deep Residual-Learning Neural Network[C], 622-630(2017).

    [8] HAUT J M, FERNANDEZ-BELTRAN R, PAOLETTI M E et al. A new deep generative network for unsupervised remote sensing single-image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 6792-6810(2018).

    [9] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [10] THURNHOFER S. Edge-enhanced image zooming[J]. Optical Engineering, 35, 1862(1996).

    [11] CHANG H, YEUNG D Y, XIONG Y M. Super-resolution through neighbor embedding[C], I(2004).

    [12] 朱福珍, 刘越, 黄鑫. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 27, 718(2019).

         ZHU F Z, LIU Y, HUANG X et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 27, 718(2019).

    [13] TIMOFTE R, DE V, GOOL L V. Anchored neighborhood regression for fast example-based super-resolution[C], 1920-1927(2013).

    [14] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [15] LI Q, GONG M G, YUAN Y et al. Symmetrical feature propagation network for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5536912(2022).

    [16] LEI S, SHI Z W, ZOU Z X. Super-resolution for remote sensing images via local-global combined network[J]. IEEE Geoscience and Remote Sensing Letters, 14, 1243-1247(2017).

    [17] XU W J, XU G L, WANG Y et al. High quality remote sensing image super-resolution using deep memory connected network[C], 8889-8892(2018).

    [18] JIANG K, WANG Z Y, YI P et al. A progressively enhanced network for video satellite imagery superresolution[J]. IEEE Signal Processing Letters, 25, 1630-1634(2018).

    [19] HAUT J M, PAOLETTI M E, FERNANDEZ-BELTRAN R et al. Remote sensing single-image superresolution based on a deep compendium model[J]. IEEE Geoscience and Remote Sensing Letters, 16, 1432-1436(2019).

    [20] DONG X Y, SUN X, JIA X P et al. Remote sensing image super-resolution using novel dense-sampling networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1618-1633(2021).

    [21] ZHANG X R, LI Z Y, ZHANG T Y et al. Remote sensing image super-resolution via dual-resolution network based on connected attention mechanism[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5611013(2021).

    [22] HUAN H, LI P C, ZOU N et al. End-to-end super-resolution for remote-sensing images using an improved multi-scale residual network[J]. Remote Sensing, 13, 666(2021).

    [23] LEI S, SHI Z W. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5401410(2021).

    [24] LEI S, SHI Z W, MO W J. Transformer-based multistage enhancement for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5615611(2021).

    [25] WANG J R, WANG B L, WANG X X et al. Hybrid attention-based U-shaped network for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5612515(2023).

    [26] XIAO Y, YUAN Q Q, JIANG K et al. TTST: a top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Transactions on Image Processing, 33, 738-752(2024).

    [27] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [28] XIAO Y, YUAN Q Q, HE J et al. Remote sensing image super-resolution via cross-scale hierarchical trans-former[J]. Geo-Spatial Information Science, 27, 1914-1930(2023).

    [29] MEI Y Q, FAN Y C, ZHOU Y Q. Image super-resolution with non-local sparse attention[C], 20, 3516-3525(2021).

    [30] LI X, WANG W H, HU X L et al. Selective kernel networks[C], 15, 510-519(2019).

    [32] 周颖, 裴盛虎, 陈海永. 基于多尺度自适应注意力的图像超分辨率网络[J]. 光学 精密工程, 32, 843-856(2024).

         ZHOU Y, PEI S H, CHEN H Y et al. Image super-resolution network based on multi-scale adaptive attention[J]. Opt. Precision Eng., 32, 843-856(2024).

    [33] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C], 270-279(2010).

    [34] XIA G S, HU J W, HU F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).

    [35] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [36] WANG J R, LU Y T, WANG S Z et al. Two-stage spatial-frequency joint learning for large-factor remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 5606813(2024).

    [37] 徐科杰, 邓培芳, 黄鸿. HSRS-SC: 面向遥感场景分类的高光谱图像数据集[J]. 中国图象图形学报, 26, 1809-1822(2021).

         XU K J, DENG P F, HUANG H. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification[J]. Journal of Image and Graphics, 26, 1809-1822(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 16, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email:

    DOI:10.37188/OPE.20253308.1238

    Topics