Optics and Precision Engineering, Volume. 33, Issue 8, 1238(2025)

Spatial adaptation and frequency fusion network for single remote sensing image super-resolution

Yichuan YANG1, Zhongqi MA2, Xinyao ZHOU1, Fujian ZHENG1, and Hong HUANG1、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing4033, China
  • 2Beijing Institute of Space Machinery and Electronics, Beijing100094, China
  • show less
    Figures & Tables(17)
    Overall structure of the SAF2Net
    Hybrid-scale patially-adaptive feature modulation
    (a) Global Multi-scale Field Selection Block; (b) Channel Non-local Attention
    (a) Spatial adaptively selection block; (b) Frequency separation selection block; (c) Spatial non-local attention
    Visualization of learned feature maps from the HSFM at different scales
    Visualization of 21th feature map in LEFEM
    Super-resolved outputs of different methods on UCMerced dataset
    Super-resolved outputs of different methods on AID dataset
    Super-resolved outputs of different methods on Sentinel-2 data
    Super-resolved outputs of different methods on HSRS-SC dataset
    • Table 1. Ablation experimental results of SAF2Net on UCMerced dataset with×4 scale factor

      View table
      View in Article

      Table 1. Ablation experimental results of SAF2Net on UCMerced dataset with×4 scale factor

      AblationVariantPSNRSSIM
      SAF2Net-28.130.7748
      GHFEM(1) HSFM: w/o scale827.980.7716
      (2) HSFM: w/o scale8+scale427.970.7709
      (3) HSFM: w/o scale8 + scale4+scale227.980.7707
      (4) HSFM: w/o CMG27.890.7678
      (5) GMFS: w/o ASM28.010.7702
      LEFEM(6) w/o SASB27.910.7690
      (7) w/o FSSB27.990.7710
      (8) w/o SASB + FSSB27.860.7669
      (9) w/o CMG28.040.7730
      Loss(10) w/o LFreq27.960.7709
    • Table 2. Evaluation metrics of different methods over the UCMerced test dataset

      View table
      View in Article

      Table 2. Evaluation metrics of different methods over the UCMerced test dataset

      ScaleMetricBicubicSRCNNVDSRLGCNetDCMTransENetHSENetHAUNetTTSTTSFNet本文

      UCMerced

      ×2

      PSNR30.7632.8433.8733.4833.6534.0334.2234.4634.3934.4834.53
      SSIM0.878 90.915 20.927 40.923 50.927 40.930 10.932 70.933 30.932 40.933 50.934 2
      SCC0.507 90.595 60.619 60.605 60.631 80.636 60.634 10.643 70.645 50.646 10.647 8
      SAM0.071 20.055 60.051 90.054 00.050 40.049 80.050 00.048 80.048 50.048 40.047 6

      UCMerced

      ×3

      PSNR27.4628.6629.7529.2829.5229.9230.0030.3430.2530.3230.45
      SSIM0.763 10.803 80.834 60.823 80.839 40.840 80.842 00.847 60.845 80.847 20.850 9
      SCC0.276 60.358 10.394 10.365 40.405 50.407 60.413 10.423 60.420 10.424 80.437 2
      SAM0.103 90.088 30.082 90.086 80.082 00.080 70.080 60.077 90.078 70.078 10.076 6

      UCMerced

      ×4

      PSNR25.6526.7827.5427.0227.2227.7727.7328.0627.9827.9228.13
      SSIM0.672 50.721 90.752 20.733 30.752 80.763 00.762 30.772 60.769 80.769 50.774 8
      SCC0.150 00.222 50.258 90.224 60.261 20.270 70.269 20.293 20.289 20.292 00.301 5
      SAM0.126 90.111 80.105 50.110 60.105 30.102 70.104 30.099 70.100 60.100 70.098 1
    • Table 3. Evaluation metrics of different methods over the AID test dataset

      View table
      View in Article

      Table 3. Evaluation metrics of different methods over the AID test dataset

      ScaleMetricBicubicSRCNNVDSRLGCNetDCMTransENetHSENetHAUNetTTSTTSFNet本文

      AID

      ×2

      PSNR32.3934.4935.1134.8035.2135.2835.5035.5835.6035.5435.67
      SSIM0.890 60.928 60.934 00.932 00.936 60.937 40.938 30.938 90.939 20.938 50.940 3
      SCC0.520 20.600 60.618 10.611 60.639 00.652 90.662 60.661 60.663 80.659 80.666 3
      SAM0.074 20.058 00.054 40.055 80.053 20.052 90.052 40.051 80.051 30.052 00.050 1

      AID

      ×3

      PSNR29.0830.5531.1730.7331.3131.4531.4931.6431.6231.5431.76
      SSIM0.786 30.837 20.851 10.841 70.856 10.859 50.858 80.861 90.862 60.859 50.863 5
      SCC0.274 30.353 40.380 00.356 40.400 50.409 20.405 30.414 40.416 00.409 60.418 9
      SAM0.105 50.089 40.083 60.087 60.082 00.080 50.080 60.079 20.079 00.080 30.078 0

      AID

      ×4

      PSNR27.3028.4028.9928.6129.1729.3829.3229.4929.4029.5029.59
      SSIM0.703 60.756 10.775 30.762 60.782 40.790 90.786 70.792 40.789 00.792 60.794 5
      SCC0.141 60.211 10.242 70.218 20.267 50.284 30.276 50.293 50.292 20.296 00.298 3
      SAM0.127 50.112 40.105 50.109 90.103 20.100 50.101 70.099 70.100 30.099 60.098 7
    • Table 4. PSNR/SSIM of different methods on 21 types of RS scenes on UCMerced test dataset for×3 SR

      View table
      View in Article

      Table 4. PSNR/SSIM of different methods on 21 types of RS scenes on UCMerced test dataset for×3 SR

      ClassBaseline自然图像超分方法
      BicubicSRCNNVDSR
      PSNRSSIMPSNRSSIMPSNRSSIM
      Agricultural26.860.542 427.470.591 427.620.611 1
      Airplane26.710.783 728.240.833 229.910.845 9
      Baseball diamond33.330.835 134.330.867 135.090.881 6
      Beach36.140.896 737.000.915 537.430.918 8
      Buildings25.090.774 326.840.827 628.570.860 6
      Chaparal25.210.700 226.110.745 326.780.775 2
      D-Residential25.760.773 327.410.818 428.840.860 2
      Forest27.530.703 528.240.740 428.560.766 5
      FreeWay27.360.766 728.690.803 330.330.838 7
      Golf Course35.210.881 536.150.890 336.400.901 7
    • Table 5. PSNR/SSIM of different methods on 30 types of RS scenes on AID test dataset for ×4 SR

      View table
      View in Article

      Table 5. PSNR/SSIM of different methods on 30 types of RS scenes on AID test dataset for ×4 SR

      Baseline自然图像超分方法
      ClassBicubicSRCNNVDSR
      PSNRSSIMPSNRSSIMPSNRSSIM
      Airport27.030.734 428.170.781 328.820.801 2
      Bare Land34.880.827 835.630.853 535.980.858 3
      Baseball Field29.060.787 830.510.827 531.180.840 3
      Beach31.070.785 031.920.813 632.290.819 5
      Bridge28.980.791 530.410.828 231.190.842 1
      Center25.260.668 126.590.729 827.480.760 1
      Church22.150.558 623.410.644 824.120.679 4
      Commercial25.830.693 527.050.755 827.620.777 2
      D-Residential23.050.591 224.130.669 124.700.699 3
      Desert38.490.900 938.840.913 039.130.914 8
      Farmland32.300.808 133.480.839 334.200.852 9
      Forest27.390.619 928.150.681 728.360.690 2
      Industrial24.750.655 226.000.721 826.720.751 5
      Meadow32.060.707 032.570.735 332.770.739 5
      M-Residential26.090.643 627.370.711 328.060.735 8
      Mountain28.040.689 028.900.739 829.110.747 7
      Park26.230.681 227.250.738 327.690.754 9
      Parking22.330.671 524.010.754 925.210.795 6
      Playground27.270.734 828.720.784 629.620.809 8
      Pond28.940.771 529.850.804 930.260.814 6
      Port24.690.742 225.820.790 726.430.809 5
      Railway Station26.310.668 627.550.732 428.190.757 8
      Resort25.980.694 227.120.748 427.710.768 1
      River29.610.725 130.480.765 230.820.775 0
      School24.910.667 326.130.731 126.780.755 5
      S-Residential25.410.553 626.160.616 526.460.630 0
      Square26.750.705 828.130.764 028.910.787 5
      Stadium24.810.689 326.100.746 726.880.774 0
      Storage Tanks24.180.636 125.270.695 925.860.721 7
      Viaduct25.860.649 027.030.712 327.740.741 8
      Average27.300.703 628.400.756 128.990.775 3
    • Table 5. PSNR/SSIM of different methods on 21 types of RS scenes on UCMerced test dataset for×3 SR

      View table
      View in Article

      Table 5. PSNR/SSIM of different methods on 21 types of RS scenes on UCMerced test dataset for×3 SR

      ClassBaseline自然图像超分方法
      BicubicSRCNNVDSR
      PSNRSSIMPSNRSSIMPSNRSSIM
      Harbor21.250.754 822.820.822 824.390.889 2
      Intersection26.480.760 427.670.818 428.820.850 7
      M-Residential25.680.746 627.060.807 428.430.845 3
      Mobile Homepark22.250.693 923.890.745 925.250.804 4
      Overpass24.590.706 425.650.735 627.780.802 0
      Parking Lot21.750.742 523.110.788 924.400.829 6
      River28.120.720 428.890.745 129.180.791 9
      Runway29.300.764 230.610.808 931.480.827 1
      S-Residential28.340.802 829.400.834 331.440.861 8
      Storage Tanks29.970.835 231.330.870 232.770.894 6
      Tennis Court29.750.839 830.980.867 232.360.888 2
      Average27.460.763 128.660.803 829.750.834 6
      Class遥感图像超分方法
      TransENetHSENetHAUNetTTSTTSFNet本文
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      Agricultural28.020.622 827.640.613 928.070.626 027.670.613 327.900.615 428.040.634 6
      Airplane29.940.853 430.090.852 830.410.856 230.450.857 830.500.858 930.330.859 2
      Baseball diamond35.040.882 835.050.882 835.340.884 135.350.885 235.370.885 535.390.885 7
      Beach37.530.920 437.690.921 437.900.923 737.690.922 137.730.922 237.880.924 1
      Buildings28.810.869 128.950.869 529.470.876 829.230.871 929.450.874 929.550.878 5
      Chaparal26.690.778 226.700.780 026.860.785 426.900.784 626.930.785 926.980.786 6
      D-Residential29.110.869 229.240.869 229.630.875 129.330.870 529.550.874 129.770.878 7
      Forest28.590.770 228.590.771 028.690.775 728.650.775 228.700.775 128.730.776 6
      FreeWay30.380.843 630.630.846 330.960.855 130.900.852 030.980.854 931.160.859 3
      Golf Course36.680.903 836.620.903 836.910.905 036.750.904 536.780.904 736.870.905 9
      Harbor24.720.900 824.880.904 825.510.916 325.340.910 725.460.913 525.710.919 3
      Intersection29.030.857 329.210.859 029.520.865 029.420.865 229.500.865 929.710.871 0
      M-Residential28.470.846 828.550.849 728.910.855 928.950.857 229.120.857 429.010.858 6
      Mobile Homepark25.640.816 125.700.818 226.140.826 026.060.823 526.250.827 626.310.831 7
      Overpass27.830.808 228.220.811 428.400.816 128.210.813 828.360.818 128.810.824 9
      Parking Lot24.450.836 824.660.840 425.250.854 325.400.854 825.570.859 325.530.860 5
      River29.250.793 129.220.793 529.400.796 229.340.796 629.290.796 029.390.796 8
      Runway31.250.830 431.150.831 031.560.835 231.850.839 231.260.832 431.760.840 8
      S-Residential31.570.865 831.640.868 731.870.868 931.740.868 331.850.868 231.910.870 5
      Storage Tanks32.710.896 532.950.897 433.160.899 933.030.898 833.140.901 033.360.902 2
      Tennis Court32.510.894 432.710.896 033.120.902 332.920.899 433.070.899 833.240.905 3
      Average29.920.840 830.000.842 030.340.847 630.250.845 830.320.847 230.450.850 9
    • Table 5. PSNR/SSIM of different methods on 30 types of RS scenes on AID test dataset for ×4 SR

      View table
      View in Article

      Table 5. PSNR/SSIM of different methods on 30 types of RS scenes on AID test dataset for ×4 SR

      Class遥感图像超分方法
      TransENetHSENetHAUNetTTSTTSFNet本文
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      Airport29.230.818 229.220.814 729.320.816 329.290.815 429.380.819 529.470.821 1
      Bare Land36.200.862 636.210.862 336.400.865 736.200.864 436.180.864 236.220.868 3
      Baseball Field31.590.853 831.610.851 331.670.855 431.700.856 431.760.856 931.800.857 2
      Beach32.550.827 032.550.825 132.690.827 332.540.827 032.580.829 332.620.830 1
      Bridge31.630.854 431.610.853 231.770.855 631.680.851 631.790.854 431.820.856 7
      Center28.030.784 827.680.779 628.140.786 527.870.785 927.960.784 128.190.788 5
      Church24.510.703 824.380.698 924.580.705 424.470.700 524.590.707 824.600.708 7
      Commercial27.970.794 227.960.789 428.050.796 627.990.788 928.090.797 828.130.798 4
      D-Residential25.130.729 625.310.725 725.240.735 225.390.720 725.480.737 625.560.738 8
      Desert39.310.918 239.250.917 639.580.918 839.380.917 039.470.918 539.500.921 9
      Farmland34.580.864 534.460.862 234.720.866 534.450.859 934.630.864 034.680.869 6
      Forest28.560.705 928.680.703 028.610.711 928.670.702 928.700.704 828.720.708 1
      Industrial27.210.779 327.220.775 627.300.782 627.230.769 927.410.784 527.480.786 8
      Meadow32.660.748 432.670.745 933.020.747 432.790.746 232.860.748 632.920.749 6
      M-Residential28.450.754 428.560.750 028.550.756 428.600.754 728.650.756 928.750.758 2
      Mountain29.280.758 229.090.755 829.320.759 529.110.758 029.250.758 729.280.762 3
      Park28.010.770 228.060.768 428.080.771 528.060.769 628.170.772 828.230.773 5
      Parking26.400.835 526.300.823 426.630.836 826.450.829 626.840.837 226.920.838 8
      Playground30.300.832 030.120.826 230.160.834 130.150.831 130.400.834 430.480.835 9
      Pond30.530.823 130.430.821 330.600.824 330.480.821 830.540.824 030.570.824 9
      Port26.910.825 626.880.821 927.010.827 726.990.825 927.080.828 027.180.830 0
      Railway Station28.610.779 128.710.772 428.700.782 828.780.783 128.850.783 928.920.785 3
      Resort28.080.783 527.920.779 628.180.785 127.940.783 628.120.785 028.160.787 6
      River31.000.783 030.890.781 131.060.783 630.900.781 330.070.783 831.130.784 3
      School27.220.778 327.170.771 227.310.779 627.280.778 427.340.779 827.420.780 8
      S-Residential26.630.645 226.740.641 326.660.646 926.740.645 926.800.645 626.830.648 0
      Square29.390.804 529.160.800 729.520.806 629.180.803 529.450.806 029.580.808 8
      Stadium27.410.796 527.300.789 627.530.798 927.330.796 827.500.799 827.620.801 0
      Storage Tanks26.200.739 426.280.736 026.270.741 226.220.739 826.410.742 626.460.744 3
      Viaduct28.210.762 928.050.757 828.290.764 428.070.761 228.250.765 728.320.768 5
      Average29.380.790 929.320.786 729.490.792 429.400.789 029.500.792 629.590.794 5
    Tools

    Get Citation

    Copy Citation Text

    Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 16, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email:

    DOI:10.37188/OPE.20253308.1238

    Topics