Laser & Infrared, Volume. 54, Issue 3, 380(2024)
The segment feature matching method for LiDAR based on Kalman fusion
[7] [7] Fox D, Thrun S, Burgard W, et al. Robust monte carlo localization for mobile robots[J]. Artificial Intelligence, 2001, 128(1-2): 99-141.
[8] [8] Ulas C, Temeltas H. A fast and robust feature-based scan-matching method in 3D slam and the effect of sampling strategies[J]. International Journal of Advanced Robotic Systems, 2013, 10(11): 396.
[9] [9] Thrun S. Particle filters in robotics[C]//Proceedings of the UAI, F, 2002. Citeseer.
[10] [10] Rublee, E., Rabaud, V., Konolige, K., et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision IEEE, 2011: 2564-2571.
[11] [11] Lu F, Milios E. Robot pose estimation in unknown environments by matching 2D range scans[J]. Journal of Intelligent and Robotic Systems, 1997, 18: 249-275.
[12] [12] Besl P J, McKay N D. Method for registration of 3-D shapes[C]//Sensor Fusion IV: Control Paradigms and Data Structures. Spie, 1992, 1611: 586-606.
Get Citation
Copy Citation Text
CUI Geng-shen, QIU De-xian, KUANG Bing, HUANG Chun-de. The segment feature matching method for LiDAR based on Kalman fusion[J]. Laser & Infrared, 2024, 54(3): 380
Category:
Received: May. 16, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: QIU De-xian (dakhinyau@mails.quet.edu.cn)