Journal of Synthetic Crystals, Volume. 53, Issue 6, 967(2024)
Effect of SiC Wafer Grinding Process on Surface Damage
[1] [1] CHOYKE W J, PENSL G. Physical properties of SiC[J]. MRS Bulletin, 1997, 22(3): 25-29.
[2] [2] HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding the role of surface mechanical properties in SiC surface machining[J]. Materials Science in Semiconductor Processing, 2023, 163: 107594.
[3] [3] KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals, 2021, 50(9): 1780-1795 (in Chinese).
[4] [4] MA B H. Comparsion analysis for inverter system based on Si and SiC power devices[J]. Electric Drive, 2017, 47(8): 3-6 (in Chinese).
[5] [5] PANDA P, CHATTERJEE S, TALLUR S, et al. Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate[J]. Scientific Reports, 2023, 13: 13329.
[6] [6] RUFF M, MITLEHNER H, HELBIG R. SiC devices: physics and numerical simulation[J]. IEEE Transactions on Electron Devices, 1994, 41(6): 1040-1054.
[7] [7] FUCHS F, STENDER B, TRUPKE M, et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide[J]. Nature Communications, 2015, 6: 7578.
[8] [8] PENG Y, CHEN X F, XIE X J, et al. Research progress of semi-insulating silicon carbide single crystal substrate[J]. Journal of Synthetic Crystals, 2021, 50(4): 619-628 (in Chinese).
[9] [9] WANG J, ZHENG F F, DONG Z G, et al. Detection method of subsurface damage of silicon carbide after grinding[J]. Diamond & Abrasives Engineering, 2015, 35(4): 60-65 (in Chinese).
[10] [10] ZHAO J, JI P X, LI Y Q, et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide[J]. Nature, 2024, 625: 60-65.
[11] [11] YIN P T, YU J Y, YANG X L, et al. Dislocation distribution in SiC wafers studied by lattice distortion detector[J]. Journal of Synthetic Crystals, 2021, 50(4): 752-756 (in Chinese).
[12] [12] CHEN G M. Study on the ultra-precison polishing technology and mechanism of silicon carbide substrates[D]. Wuxi: Jiangnan University, 2017 (in Chinese).
[13] [13] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)[J]. Scientific Reports, 2015, 5: 8947.
[14] [14] ZHOU Y, PAN G S, SHI X L, et al. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers[J]. Tribology International, 2015, 87: 145-150.
[15] [15] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S46.
[16] [16] DENG H, HOSOYA K, IMANISHI Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry[J]. Electrochemistry Communications, 2015, 52: 5-8.
[17] [17] ZHANG X, WANG R, ZHANG X Q, et al. Research status and development trend of silicon carbide single crystal substrate machining technology[J]. Journal of Minzu University of China (Natural Sciences Edition), 2021, 30(4): 5-12 (in Chinese).
Get Citation
Copy Citation Text
XIE Guijiu, ZHANG Wenbin, WANG Yan, SONG Zhen, ZHANG Bing. Effect of SiC Wafer Grinding Process on Surface Damage[J]. Journal of Synthetic Crystals, 2024, 53(6): 967
Category:
Received: Jan. 3, 2024
Accepted: --
Published Online: Aug. 22, 2024
The Author Email: ZHANG Wenbin (beezwb@163.com)
CSTR:32186.14.