Journal of Infrared and Millimeter Waves, Volume. 39, Issue 5, 540(2020)
A wideband terahertz planar Schottky diode fourth-harmonic mixer with low LO power requirement
[1] Hosako I, Sekine N, Patrashin M et al. At the dawn of a new era in terahertz technology[J]. Proceedings of the IEEE, 95, 1611-1623(2007).
[2] Siegel P H. THz instruments for space[J]. IEEE Transactions on Antennas and Propagation, 55, 2957-2965(2007).
[3] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Terahertz Waves, 32, 143-171(2011).
[4] Chen Z, Zhang B, Zhang Y et al. 220 GHz outdoor wireless communication system based on a Schottky-diode transceiver[J]. IEICE Electronics Express, 13, 20160282-20160282(2016).
[5] Schlecht E, Gill J, Dengler R et al. A unique 520–590 GHz biased subharmonically-pumped Schottky mixer[J]. IEEE Microwave and Wireless Components Letters, 17, 879-881(2007).
[6] Sobis P J, Wadefalk N, Emrich A et al. A broadband, low noise, integrated 340 GHz Schottky diode receiver[J]. IEEE Microwave and Wireless Components Letters, 22, 366-368(2012).
[7] Hesler J L, Hall W R, Crowe T W et al. Fixed-tuned submillimeter wavelength waveguide mixers using planar Schottky-barrier diodes[J]. IEEE transactions on microwave theory and techniques, 45, 653-658(1997).
[8] Schlecht E, Siles J V, Lee C et al. Schottky diode based 1.2 THz receivers operating at room-temperature and below for planetary atmospheric sounding[J]. IEEE Transactions on Terahertz Science and Technology, 4, 661-669(2014).
[9] Zhang B, Fan Y, Chen Z et al. An improved 110–130-GHZ fix-tuned subharmonic mixer with compact microstrip resonant cell structure[J]. Journal of Electromagnetic Waves and Applications, 25, 411-420(2011).
[10] Chen Z, Zhang B, Fan Y et al. Design of a low noise 190–240 GHz subharmonic mixer based on 3D geometric modeling of Schottky diodes and CAD load-pull techniques[J]. IEICE Electronics Express, 13, 20160604-20160604(2016).
[11] Liu G, Zhang B, Zhang L et al. 420GHz subharmonic mixer based on heterogeneous integrated Schottky diode[J]. IEICE Electronics Express, 14, 20170459(2017).
[12] Bulcha B T, Hesler J L, Drakinskiy V et al. 9-3.2 THz Schottky based harmonic mixer design and characterization[C].
[13] Ji D, Zhang B, Yang Y et al. A 220-GHz Third-Harmonic Mixer Based on Balanced Structure and Hybrid Transmission Line[J]. IEEE Access, 7, 50007-50011(2019).
[14] Zhang B, Lv X, He J et al. 1.1 THz tenth harmonic mixer based on planar GaAs Schottky diode[J]. Antennas & Propagation(2019).
[15] Liu Z, Weikle R M. High-order subharmonically pumped mixers using phased local oscillators[J]. IEEE transactions on microwave theory and techniques, 54, 2977-2982(2006).
[16] Schur J, Ruf M, Schmidt L P. Design of a 4 th harmonic Schottky diode mixer for THz frequencies[C], 756-757(2007).
[17] Schur J, Ruf M, Schmidt L P. A 4 th harmonic schottky diode mixer-facilitated access to THz frequencies[C]. CA, 1-2(2008).
[18] Maestrojuan I, Ederra I, Gonzalo R. Fourth-harmonic Schottky diode mixer development at sub-millimeter frequencies[J]. IEEE Transactions on Terahertz Science and Technology, 5, 518-520(2015).
[19] Deng J, Lu Q, Jia D et al. Wideband fourth-harmonic mixer operated at 325–500 GHz[J]. IEEE Microwave and Wireless Components Letters, 28, 242-244(2018).
[20] Pérez-Escudero J M, Quemada C, Gonzalo R et al. Comparison of Fourth-harmonic and Combined Doubler/Subharmonic Mixer with integrated MMIC based Local Oscillator[C]. France, 1-2(2019).
[21] Wang C, He Y, Lu B et al. Robust sub-harmonic mixer at 340 ghz using intrinsic resonances of hammer-head filter and improved diode model[J]. Terahertz Waves, 38, 1397-1415(2017).
[22] Zhong F, Zhang B, Fan Y et al. Application of Implicit Space Mapping in the Design of Hammerhead Filter in Millimeter-Wave Band[J]. Engineering and Technology, 4, 670-674(2012).
[23] Jun J, Yue H E, Cheng W et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of infrared and millimeter waves, 35, 418-424(2016).
[24] Treuttel J, Gatilova L, Maestrini A et al. A 520–620-GHz Schottky receiver front-end for planetary science and remote sensing with 1070 K–1500 K DSB noise temperature at room temperature[J]. IEEE transactions on terahertz science and technology, 6, 148-155(2015).
[25] Tang A Y, Stake J. Impact of eddy currents and crowding effects on high-frequency losses in planar Schottky diodes[J]. IEEE Transactions on Electron Devices, 58, 3260-3269(2011).
[26] Crowe T W, Peatman W C B, Bishop W L. GaAs Schottky barrier diodes for space based applications at submillimeter wavelengths[C], 256-272(1990).
[27] Mehdi I, Siegel P H. Effect of parasitic capacitance on the performance of planar subharmonically pumped Schottky diode mixers[C]. Michigan, 379-393(1994).
[28] Crowe T W, Mattauch R J, Roser H P et al. GaAs Schottky diodes for THz mixing applications[J]. Proceedings of the IEEE, 80, 1827-1841(1992).
[29] Crowe T W, Mattauch R J. Analysis and optimization of millimeter-and submillimeter- wavelength mixer diodes[J]. IEEE transactions on microwave theory and techniques, 35, 159-168(1987).
[30] Iida S. Ito K., Selective etching of gallium arsenide crystals in H2SO4-H2O2-H2O system[J]. Journal of The Electrochemical Society, 118, 768-771(1971).
[31] Maestrojuan I, Rea S, Ederra I et al. Experimental analysis of different measurement techniques for characterization of millimeter‐ wave mixers[J]. Microwave and Optical Technology Letters, 56, 1441-1447(2014).
Get Citation
Copy Citation Text
Yi-Lin YANG, Bo ZHANG, Dong-Feng JI, Yi-Wei WANG, Xiang-Yang ZHAO, Yong FAN. A wideband terahertz planar Schottky diode fourth-harmonic mixer with low LO power requirement[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 540
Category: Millimeter Wave and Terahertz Technology
Received: Dec. 7, 2019
Accepted: --
Published Online: Dec. 29, 2020
The Author Email: Bo ZHANG (zhangbouestc@yeah.net)