Acta Optica Sinica, Volume. 43, Issue 20, 2014003(2023)
Optoelectronic Performance Optimization of InGaN-Based Violet Laser Diodes by Composite Electron Blocking Layers
[1] Nakamura S, Senoh M, Nagahama S I et al. InGaN-based multi-quantum-well-structure laser diodes[J]. Japanese Journal of Applied Physics, 35, L74-L76(1996).
[2] Liang F, Zhao D G, Liu Z S et al. Improved performance of GaN-based blue laser diodes using asymmetric multiple quantum wells without the first quantum barrier layer[J]. Optics Express, 30, 9913-9923(2022).
[3] Goldberg G R, Ivanov P, Ozaki N et al. Gallium nitride light sources for optical coherence tomography[J]. Proceedings of SPIE, 10104, 101041X(2017).
[4] Anani M, Abid H, Chama Z et al. InxGa1-xN refractive index calculations[J]. Microelectronics Journal, 38, 262-266(2007).
[5] Liang F, Chen P, Zhao D G et al. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC[J]. Chinese Physics B, 25, 057703(2016).
[6] Cao Z K, Wang X W, Zhao D G et al. The influence of temperature and TMGa flow rate on the quality of p-GaN[J]. AIP Advances, 11, 035109(2021).
[7] Alahyarizadeh G, Amirhoseiny M, Hassan Z. Effect of different EBL structures on deep violet InGaN laser diodes performance[J]. Optics & Laser Technology, 76, 106-112(2016).
[8] Zhang Z Z, Yang J, Zhao D G et al. The melt-back etching effect of the residual Ga in the reactor for GaN grown on (111) Si[J]. AIP Advances, 12, 095106(2022).
[9] Hezabra A, Abdeslam N A, Sengouga N et al. 2D study of AlGaN/AlN/GaN/AlGaN HEMTs′ response to traps[J]. Journal of Semiconductors, 40, 022802(2019).
[10] Hu L, Zhang L Q, Liu J P et al. High power GaN-based blue lasers[J]. Chinese Journal of Lasers, 47, 0701025(2020).
[11] Peng L Y, Liu S T, Yang J et al. The influence of residual GaN on two-step-grown GaN on sapphire[J]. Materials Science in Semiconductor Processing, 135, 105903(2021).
[12] Liang F, Zhao D G, Liu Z S et al. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. Journal of Semiconductors, 42, 112801(2021).
[13] Yuan Q H, Jing H Q, Zhang Q Y et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 56, 040003(2019).
[14] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).
[15] Zhu K, Li H, Hao Y Q et al. Design of grating structure in distributed Bragg reflector semiconductor laser[J]. Chinese Journal of Lasers, 50, 1101022(2023).
[16] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).
[17] Kasami Y, Kuroda Y, Seo K et al. Large capacity and high-data-rate phase-change disks[J]. Japanese Journal of Applied Physics, 39, 756-761(2000).
[18] Ben Y H, Liang F, Zhao D G et al. The role of InGaN quantum barriers in improving the performance of GaN-based laser diodes[J]. Optics & Laser Technology, 145, 107523(2022).
[19] Li J M, Liu Z, Liu Z Q et al. Advances and prospects in nitrides based light-emitting-diodes[J]. Journal of Semiconductors, 37, 061001(2016).
[20] Xing Y, Zhao D G, Jiang D S et al. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes[J]. Chinese Physics B, 27, 028101(2018).
[21] Nakamura S. InGaN-based violet laser diodes[J]. Semiconductor Science and Technology, 14, R27-R40(1999).
[22] Yamashita Y, Kuwabara M, Torii K et al. A 340-nm-band ultraviolet laser diode composed of GaN well layers[J]. Optics Express, 21, 3133-3137(2013).
[23] Zhang W, Zhong L, Zhang D S et al. Research on 795 nm high power external cavity semiconductor laser[J]. Acta Optica Sinica, 43, 1014004(2023).
[24] Hu P X[M]. Handbook of college physics, 566-567(1999).
[25] Yang J, Zhao D G, Liu Z S et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. Journal of Semiconductors, 43, 010501(2022).
[26] Zhang Z Z, Yang J, Zhao D G et al. Theoretical optical output power improvement of InGaN-based violet laser diode using AlGaN/GaN composite last quantum barrier[J]. Nanomaterials, 12, 3990(2022).
[27] Liang F, Zhao D G, Jiang D S et al. Output light power of InGaN-based violet laser diodes improved by using a u-InGaN/GaN/AlGaN multiple upper waveguide[J]. Chinese Physics B, 26, 124210(2017).
[28] Xing Z Q, Zhou Y J, Liu Y H et al. Reduction of electron leakage of AlGaN-based deep ultraviolet laser diodes using an inverse-trapezoidal electron blocking layer[J]. Chinese Physics Letters, 37, 027302(2020).
[29] Liang F, Zhao D G, Jiang D S et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide[J]. Japanese Journal of Applied Physics, 57, 070307(2018).
[30] Gao X Y, Litscher G, Liu K et al. Sino-European transcontinental basic and clinical high-tech acupuncture studies-part 3: violet laser stimulation in anesthetized rats[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 402590(2012).
[31] Hatayama H, Kato J, Inoue A et al. Comparison of violet diode laser with CO2 laser in surgical performance of soft tissues[J]. Proceedings of SPIE, 6425, 64250E(2007).
[32] Wang W J, Liao M L, Yuan J et al. Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers[J]. Chinese Physics B, 31, 074206(2022).
[33] Li X, Zhao D G, Jiang D S et al. Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer[J]. Journal of Semiconductors, 37, 014007(2016).
[34] Nawaz S M, Niass M I, Wang Y F et al. Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide[J]. Superlattices and Microstructures, 145, 106643(2020).
[35] Goudon T, Miljanović V, Schmeiser C. On the Shockley-Read-Hall model: generation-recombination in semiconductors[J]. SIAM Journal on Applied Mathematics, 67, 1183-1201(2007).
[36] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. Journal of Applied Physics, 89, 5815-5875(2001).
[37] Laws G M, Larkins E C, Harrison I et al. Improved refractive index formulas for the AlxGa1–xN and InyGa1–yN alloys[J]. Journal of Applied Physics, 89, 1108-1115(2001).
[38] Piprek J, Peng T, Qui G et al. Energy gap bowing and refractive index spectrum of AlInN and AlGaInN[C], 227-230(2002).
[39] Huang C Y, Lin Y D, Tyagi A et al. Optical waveguide simulations for the optimization of InGaN-based green laser diodes[J]. Journal of Applied Physics, 107, 023101(2010).
[40] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in Ⅲ‑V nitride alloy heterostructures[J]. Applied Physics Letters, 80, 1204-1206(2002).
Get Citation
Copy Citation Text
Qiling Tan, Shuping Li. Optoelectronic Performance Optimization of InGaN-Based Violet Laser Diodes by Composite Electron Blocking Layers[J]. Acta Optica Sinica, 2023, 43(20): 2014003
Category: Lasers and Laser Optics
Received: Jul. 24, 2023
Accepted: Sep. 6, 2023
Published Online: Oct. 23, 2023
The Author Email: Li Shuping (lsp@xmu.edu.cn)