Journal of Infrared and Millimeter Waves, Volume. 43, Issue 3, 375(2024)

A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing

Qian YAO1,2, Hua XU1、*, Cheng FAN1, Li LI1, Si-Heng WANG3, Yang ZHENG1, Wen-Bin XU1,4, Wei-Zhen HOU1,2, Jing-Hai XU5, Qi-Feng ZHUANG5, Peng ZHOU1, Hao ZHANG1,2, Zhen-Ting CHEN6, and Zheng-Qiang LI1,2
Author Affiliations
  • 1State Environment Protection Key Laboratory of Satellite Remote Sensing,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Remote Sensing Satellite General Department,China Academy of Space Technology,Beijing 100094,China
  • 4Science and Technology on Optical Radiation Laboratory,Beijing Institute of Environmental Characteristics,Beijing 100854,China
  • 5College of Geomatics Science and Technology,Nanjing Tech University,Nanjing 211816,China
  • 6School of Information Engineering,Kunming University,Kunming 650214,China
  • show less
    References(45)

    [1] ZHAO Shuai-Yang, HU Xing-Bang, JING Xin et al. Analyses of Land Surface Emissivity Characteristics in Mid-Infrared Bands[J]. Spectroscopy and Spectral Analysis, 38, 1393-1399(2018).

    [2] JING Xin, HU Xiu-Qing, ZHAO Shuai-Yang et al. The Sun Glint Area Reflectance Calculation of VIIRS Middle Infrared Channel in South Indian Ocean Based on Improved Nonlinear Split Window Model[J]. Spectroscopy and Spectral Analysis, 37, 394-402(2017).

    [3] TANG B, LI Z L. Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23[J]. International Journal of Remote Sensing, 29, 4907-4925(2008).

    [4] KAUFMAN Y J, REMER L A. Detection of forests using mid-IR reflectance: an application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 32, 672-683(1994).

    [5] MUSHKIN A, BALICK L K, GILLESPIE A R. Extending surface temperature and emissivity retrieval to the mid-infrared (3-5 mu m) using the Multispectral Thermal Imager (MTI)[J]. Remote Sensing of Environment, 98, 141-151(2005).

    [6] KERBER A, SCHUTT J. Utility of AVHRR channels 3 and 4 in land-cover mapping[J]. Photogrammetric Engineering and Remote Sensing, 52, 1877-1883(1986).

    [7] SALISBURY J W, D'ARIA D M. Emissivity of terrestrial materials in the 3–5 μm atmospheric window[J]. Remote Sensing of Environment, 47, 345-361(1994).

    [8] LIN Z Y, CHEN F, NIU Z et al. An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data[J]. Remote Sensing of Environment, 211, 376-387(2018).

    [9] VERAVERBEKE S, HARRIS S, HOOK S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data[J]. Remote Sensing of Environment, 115, 2702-2709(2011).

    [10] VERAVERBEKE S, HOOK S, HULLEY G. An alternative spectral index for rapid fire severity assessments[J]. Remote Sensing of Environment, 123, 72-80(2012).

    [11] VAN GERREVINK M J, VERAVERBEKE S. Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio[J]. Remote Sensing, 13, 19(2021).

    [12] ZHANG N, SUN L, SUN Z D et al. Detecting Low-Intensity Fires in East Asia Using VIIRS Data: An Improved Contextual Algorithm[J]. Remote Sensing, 13, 12(2021).

    [13] SANTANA N C, DE CARVALHO O A, GOMES R A T et al. Burned-Area Detection in Amazonian Environments Using Standardized Time Series Per Pixel in MODIS Data[J]. Remote Sensing, 10, 27(2018).

    [14] LIN Z Y, CHEN F, LI B et al. FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and Initial Assessment Using MODIS and Landsat Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 6420-6430(2017).

    [15] ENGEL C B, JONES S D, REINKE K. A Seasonal-Window Ensemble-Based Thresholding Technique Used to Detect Active Fires in Geostationary Remotely Sensed Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 4947-4956(2021).

    [16] LEIGHT C J, MCCANTA M C, GLOTCH T D et al. Characterization of tephra deposits using VNIR and MIR spectroscopy: A comprehensive terrestrial tephra spectral library[J]. Remote Sensing of Environment, 273, 10(2022).

    [17] LOMBARDO V, CORRADINI S, MUSACCHIO M et al. Eruptive Styles Recognition Using High Temporal Resolution Geostationary Infrared Satellite Data[J]. Remote Sensing, 11, 13(2019).

    [18] DAVRANCHE A, POULIN B, LEFEBVRE G. Mapping flooding regimes in Camargue wetlands using seasonal multispectral data[J]. Remote Sensing of Environment, 138, 165-171(2013).

    [19] ULLAH S, SCHLERF M, SKIDMORE A K et al. Identifying plant species using mid-wave infrared (2.5-6 μm) and thermal infrared (8-14 μm) emissivity spectra[J]. Remote Sensing of Environment, 118, 95-102(2012).

    [20] BUENO I T, ACERBI F W, SILVEIRA E M O et al. Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series[J]. Remote Sensing, 11, 14(2019).

    [21] AL-HAMDAN M, CRUISE J, RICKMAN D et al. Effects of Spatial and Spectral Resolutions on Fractal Dimensions in Forested Landscapes[J]. Remote Sensing, 2, 611-40(2010).

    [22] SALES M H R, SOUZA C M, KYRIAKIDIS P C. Fusion of MODIS Images Using Kriging With External Drift[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 2250-2259(2013).

    [23] REALMUTO V J, DENNISON P E, FOOTE M et al. Specifying the saturation temperature for the HyspIRI 4-μm channel[J]. Remote Sensing of Environment, 167, 40-52(2015).

    [24] ZHANG B, LIU Y, ZHANG W J et al. Analysis of the Proportion of Surface Reflected Radiance in Mid-Infrared Absorption Bands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2639-2646(2014).

    [25] LIU Y, ZHANG W J, ZHANG B. Top-of-Atmosphere Image Simulation in the 4.3-μm Mid-infrared Absorption Bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 452-465(2016).

    [26] XU H Y, XU D Y, CHEN S C et al. Rapid Determination of Soil Class Based on Visible-Near Infrared, Mid-Infrared Spectroscopy and Data Fusion[J]. Remote Sensing, 12, 15(2020).

    [27] TANG B H, HUA W, LI Z L et al. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements[J]. Optics Express, 20, 17760-17766(2012).

    [28] QIAN Y G, ZHAO E Y, GAO C X et al. Land Surface Temperature Retrieval Using Nighttime Mid-Infrared Channels Data From Airborne Hyperspectral Scanner[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 1208-1216(2015).

    [29] BOYD D S, PETITCOLIN F. Remote sensing of the terrestrial environment using middle infrared radiation (3.0-5.0 μm)[J]. International Journal of Remote Sensing, 25, 3343-3368(2004).

    [30] ZENG H, REN H Z, NIE J et al. Land Surface Temperature and Emissivity Retrieval from Nighttime Middle and Thermal Infrared Images of Chinese Fengyun-3D MERSI-II[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7724-7733(2021).

    [31] ZHAO E Y, QIAN Y G, GAO C X et al. Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data[J]. Remote Sensing, 6, 12667-12685(2014).

    [32] QIAN Y G, WANG N, MA L L et al. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data[J]. Optics Express, 24, A257-A269(2016).

    [33] TANG B H, WANG J. A Physics-Based Method to Retrieve Land Surface Temperature From MODIS Daytime Midinfrared Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4672-4679(2016).

    [34] CHENG J, LIANG S L, LIU Q H et al. Temperature and Emissivity Separation From Ground-Based MIR Hyperspectral Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 1473-1484(2011).

    [35] QIAN Y G, QIU S, WANG N et al. Land Surface Temperature and Emissivity Retrieval From Time-Series Mid-Infrared and Thermal Infrared Data of SVISSR/FY-2C[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 1552-1563(2013).

    [36] LI Z-L, WU H, WANG N et al. Land surface emissivity retrieval from satellite data[J]. International Journal of Remote Sensing, 34, 3084-3127(2013).

    [37] CAPELLE V, J-M HARTMANN. Use of hyperspectral sounders to retrieve daytime sea-surface temperature from mid-infrared radiances: Application to IASI[J]. Remote Sensing of Environment, 280, 113171(2022).

    [38] JIANG G M, LI Z L, NERRY F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI[J]. Remote Sensing of Environment, 105, 326-340(2006).

    [39] YE X, REN H Z, WANG P X et al. Mid-Infrared Emissivity Retrieval from Nighttime Sentinel-3 SLSTR Images Combining Split-Window Algorithms and the Radiance Transfer Method[J]. International Journal of Environmental Research and Public Health, 20, 14(2023).

    [40] BERK A, BERNSTEIN L S, ANDERSON G P et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS[J]. Remote Sensing of Environment, 65, 367-75(1998).

    [41] YANG G, LIU Q, LIU Q et al. Simulation of high-resolution mid-infrared (3–5 μm) images using an atmosphere radiative transfer analytic model[J]. International Journal of Remote Sensing, 30, 6003-6022(2009).

    [42] ZASETSKY A Y, EARLE M E, COSIC B et al. Retrieval of aerosol physical and chemical properties from mid-infrared extinction spectra[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 107, 294-305(2007).

    [43] KLEBE D I, BLATHERWICK R D, MORRIS V R. Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties[J]. Atmospheric Measurement Techniques, 7, 637-645(2014).

    [44] TRATT D M, YOUNG S J, HACKWELL J A et al. MAHI: An Airborne Mid-Infrared Imaging Spectrometer for Industrial Emissions Monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4558-4566(2017).

    [45] LI Z L, TANG B H, WU H et al. Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment, 131, 14-37(2013).

    Tools

    Get Citation

    Copy Citation Text

    Qian YAO, Hua XU, Cheng FAN, Li LI, Si-Heng WANG, Yang ZHENG, Wen-Bin XU, Wei-Zhen HOU, Jing-Hai XU, Qi-Feng ZHUANG, Peng ZHOU, Hao ZHANG, Zhen-Ting CHEN, Zheng-Qiang LI. A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 375

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 5, 2023

    Accepted: --

    Published Online: Apr. 29, 2024

    The Author Email: Hua XU (xuhua@aircas.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2024.03.012

    Topics