Chinese Journal of Lasers, Volume. 52, Issue 8, 0802201(2025)

Parameters Optimization of Laser Cladding Process for H13 Mold Steel Surface Based on Comprehensive Statistical Analysis Method

Jianghong Lin, Maohua Du*, and Chuanxu Pan
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan , China
  • show less
    Figures & Tables(19)
    Laser cladding equipment
    Schematic diagram of cladding layer section (HAZ: heat affected zone)
    Morphology of the upper surface and X1 cross-section of the specimen (x0 represents the datum position; x1, x2, and x3 are used to indicate the position of X1, X2, and X3 cross-sections. Specimens 1, 7, and 8: x1=5 mm, x2=15 mm, x3=25 mm; specimen 2: x1=10 mm, x2=20 mm, x3=30 mm; specimens 3, 4, 5, 6, 9, 10, 11, 12, 14, and 15: x1=15 mm, x2=25 mm, x3=35 mm; specimen 13: x1=25 mm, x2=35 mm, x3=45 mm; specimen 16: x1=20 mm, x2=30 mm, x3=40 mm)
    Influence of process parameters on geometric morphology of the cladding layer
    Mean flatness and dilution rate versus process parameters
    Relationship between process parameters and comprehensive evaluation coefficient under different comprehensive evaluation methods
    Microhardness of cladding layer section. (a) Along the vertical direction; (b) along the horizontal direction
    Microstructures. (a) Cladding layer region; (b) the junction zone between the cladding layer and the heat affected zone; (c) heat affected zone (HAZ); (d) substrate
    Microstructures of cladding layer in each pass. (a) The first pass; (b) the second pass; (c) the third pass; (d) the fourth pass
    • Table 1. Factor and level table

      View table

      Table 1. Factor and level table

      LevelP /WV /(mm/s)G /(g/min)D /%
      1200041035
      2220061245
      3240081455
      42600101665
    • Table 2. Experimental schedule and corresponding response values

      View table

      Table 2. Experimental schedule and corresponding response values

      No.Process parameterGeometric shape sizeResponse value
      P /W

      V /

      (mm/s)

      G /

      (g/min)

      D /%

      Cladding layer width

      W /mm

      Cladding layer height

      H /mm

      Cladding layer area

      Sc /mm2

      Molten pool area

      Sm /mm2

      τη
      320004103518.1000.78211.1149.1970.7830.453
      520008164516.0030.7547.9143.1990.6560.288
      820006146512.3691.31810.8052.2230.6630.171
      15200010125514.1850.6064.6082.5300.5360.354
      122004124515.7981.17314.5017.2700.7830.334
      7220010106512.4560.5544.1993.0210.6090.419
      1022008143517.9160.5277.4324.8260.7870.394
      1422006165514.4881.25311.2534.0160.6200.263
      4240010163518.0290.4776.6635.1060.7750.434
      624008126512.5850.8326.3924.7250.6110.425
      1124006104516.3540.6487.51610.5350.7100.584
      1624004145514.9351.53215.9417.7190.6970.326
      226008105514.4860.6385.7667.8360.6250.576
      926004166513.2882.11118.8866.4570.6730.255
      1226006123518.2460.7309.39613.5830.7060.591
      13260010144516.2710.5956.0746.4060.6290.513
    • Table 3. Variance analysis of cladding layer morphology

      View table

      Table 3. Variance analysis of cladding layer morphology

      Dependent variableParameterFInfluence degree /%Significance
      WVariance model5120.832<0.001
      P3.1090.8360.188
      V1.3030.3500.417
      G0.7470.2010.592
      D366.66298.613<0.001
      HVariance model148.247<0.001
      P2.5842.1530.228
      V66.34255.2650.003
      G21.26117.7110.016
      D29.85624.8710.10
      ScVariance model203.162<0.001
      P2.2281.5660.264
      V118.20683.0940.001
      G19.44113.6660.018
      D2.3801.6730.247
      SmVariance model57.8320.004
      P15.94033.3020.028
      V11.88024.8200.041
      G7.81616.3290.072
      D12.22925.5490.040
    • Table 4. Analysis of variance for flatness and dilution rate

      View table

      Table 4. Analysis of variance for flatness and dilution rate

      Dependent variableParameterFInfluence degree /%Significance
      τVariance model279.304<0.001
      P1.0478.2600.485
      V3.16424.9630.185
      G0.4133.2580.756
      D8.05163.5190.060
      ηVariance model237.667<0.001
      P26.73331.6610.011
      V6.9628.2450.073
      G33.87340.1170.008
      D18.86822.3460.019
    • Table 5. EWM weight values

      View table

      Table 5. EWM weight values

      Response valueWeight
      W0.410
      τ0.222
      η0.368
    • Table 6. Results of optimization analysis

      View table

      Table 6. Results of optimization analysis

      No.Standardized resultGRG valueRSR valueC value
      Wτη
      30.9750.9930.3290.7670.7080.636
      50.6190.4770.7220.5770.6520.632
      800.5041.0000.6160.5050.513
      150.30900.5630.4430.3720.382
      10.5840.9840.6120.6460.6780.654
      70.0150.2900.4100.3990.2630.274
      100.9441.0000.4700.7690.7620.692
      140.3610.3350.7810.5310.5570.531
      40.9630.9540.3740.7490.6770.650
      60.0370.2970.3950.3990.2800.271
      110.6780.6910.0170.5110.5200.428
      160.4370.6400.6300.5380.6200.556
      20.3600.3540.0360.4020.2920.254
      90.1560.5480.8010.5320.5720.505
      121.0000.67600.6670.5860.506
      130.6640.3690.1850.4830.4570.420
    • Table 7. Experimental verification of GRA-EWM method

      View table

      Table 7. Experimental verification of GRA-EWM method

      Response valuePredicted valueExperimental valueSpecimen No. 10Sectional image
      W /mm17.825
      τ0.833
      η0.437
      GRG0.8190.8710.769
    • Table 8. Experimental verification of TOPSIS-EWM method

      View table

      Table 8. Experimental verification of TOPSIS-EWM method

      Response valuePredicted valueExperimental valueSpecimen No. 10Sectional image
      W /mm17.173
      τ0.798
      η0.359
      C0.8480.7090.692
    • Table 9. Experimental verification of RSR-EWM method

      View table

      Table 9. Experimental verification of RSR-EWM method

      Response valuePredicted valueExperimental valueSpecimen No. 10Sectional image
      W /mm17.632
      τ0.758
      η0.354
      RSR0.9150.7670.762
    • Table 10. Elemental content of each region

      View table

      Table 10. Elemental content of each region

      RegionMass fraction of each element /%
      CSiPSVCrMnFeMo
      Cladding layer1.491.090.020.134.105.340.4486.680.71
      HAZ0.651.110.050.190.915.120.4890.800.70
      Substrate1.661.080.060.210.785.010.3590.300.55
    Tools

    Get Citation

    Copy Citation Text

    Jianghong Lin, Maohua Du, Chuanxu Pan. Parameters Optimization of Laser Cladding Process for H13 Mold Steel Surface Based on Comprehensive Statistical Analysis Method[J]. Chinese Journal of Lasers, 2025, 52(8): 0802201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Oct. 9, 2024

    Accepted: Dec. 3, 2024

    Published Online: Mar. 17, 2025

    The Author Email: Maohua Du (1337289843@qq.com)

    DOI:10.3788/CJL241252

    CSTR:32183.14.CJL241252

    Topics