Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1000006(2024)
Research Progress of Single-Shot Ultrafast Optical Imaging
[1] Zylstra A B, Hurricane O A, Callahan D A et al. Burning plasma achieved in inertial fusion[J]. Nature, 601, 542-548(2022).
[2] Kritcher A L, Young C V, Robey H F et al. Design of inertial fusion implosions reaching the burning plasma regime[J]. Nature Physics, 18, 251-258(2022).
[3] Danson C N, Gizzi L A. Inertial confinement fusion ignition achieved at the National Ignition Facility: an editorial[J]. High Power Laser Science and Engineering, 11, e40(2023).
[4] Kiely-Collins H, Winter G E, Bernardes G J L. The role of reversible and irreversible covalent chemistry in targeted protein degradation[J]. Cell Chemical Biology, 28, 952-968(2021).
[5] Zhu D Y, Li X Y, Li Y L et al. Transformation of one-dimensional linear polymers into two-dimensional covalent organic frameworks through sequential reversible and irreversible chemistries[J]. Chemistry of Materials, 33, 413-419(2021).
[6] Zhang Y D, Shen B L, Wu T et al. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics[J]. Nature Communications, 13, 5247(2022).
[7] Liang J Y, Wang L V. Single-shot ultrafast optical imaging[J]. Optica, 5, 1113-1127(2018).
[8] Pupeikis J, Hu W, Willenberg B et al. Efficient pump-probe sampling with a single-cavity dual-comb laser: application in ultrafast photoacoustics[J]. Photoacoustics, 29, 100439(2023).
[9] Tikhonov D S, Blech A, Leibscher M et al. Pump-probe spectroscopy of chiral vibrational dynamics[J]. Science Advances, 8, eade0311(2022).
[10] Li P, Zhou L D, Feng B et al. Theoretical analysis on small-scale self-focusing of multi-wavelength beams in an isotropic medium[J]. Laser Physics, 30, 085401(2020).
[11] Thul D, Richardson M, Rostami Fairchild S. Spatially resolved filament wavefront dynamics[J]. Scientific Reports, 10, 8920(2020).
[12] Guo H, Wang T J, Zhang X et al. Direct measurement of radial fluence distribution inside a femtosecond laser filament core[J]. Optics Express, 28, 15529-15541(2020).
[13] Manes K R, Spaeth M L, Adams J J et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).
[14] Li Z, Han L, Ouyang X P et al. Three-dimensional laser damage positioning by a deep-learning method[J]. Optics Express, 28, 10165-10178(2020).
[15] Ding W Y, Chen M J, Cheng J et al. Laser damage evolution by defects on diamond fly-cutting KDP surfaces[J]. International Journal of Mechanical Sciences, 237, 107794(2023).
[16] Abu-Shawareb H, Acree R, Adams P et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 129, 075001(2022).
[17] Schaeffer D B, Cruz F D, Dorst R S et al. Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results[J]. Physics of Plasmas, 29, 042901(2022).
[18] Grepl F, Tryus M, Chagovets T et al. Parametric amplification as a single-shot time-resolved off-harmonic probe for laser-matter interactions[J]. High Power Laser Science and Engineering, 11, e45(2023).
[19] Döpp A, Eberle C, Howard S et al. Data-driven science and machine learning methods in laser-plasma physics[J]. High Power Laser Science and Engineering, 11, e55(2023).
[20] Mikami H, Gao L, Goda K. Ultrafast optical imaging technology: principles and applications of emerging methods[J]. Nanophotonics, 5, 497-509(2016).
[21] Chen R Y, Wang Y Z, Shao J D et al. High-damage-threshold chirped mirrors for next-generation ultrafast, high-power laser systems[J]. IEEE Photonics Technology Letters, 34, 93-96(2022).
[22] Wang T, Li C, Ren B et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 11, e25(2023).
[23] Hart P A, Carpenter A, Claus L et al. First X-ray test of the Icarus nanosecond-gated camera[J]. Proceedings of SPIE, 11038, 110380Q(2019).
[24] Lewis A, Baker S, Corredor A et al. New design yields robust large-area framing camera[J]. Review of Scientific Instruments, 92, 083103(2021).
[25] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).
[26] Tang H C, Men T, Liu X L et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 11, 244(2022).
[27] Wang X F, Yan L H, Si J H et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique[J]. Applied Optics, 53, 8395-8399(2014).
[28] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).
[29] Suzuki T, Hida R, Yamaguchi Y et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution[J]. Applied Physics Express, 10, 092502(2017).
[30] Moon J, Yoon S, Lim Y S et al. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing[J]. Optics Express, 28, 4463-4474(2020).
[31] Ehn A, Bood J, Li Z M et al. FRAME: femtosecond videography for atomic and molecular dynamics[J]. Light: Science & Applications, 6, e17045(2017).
[32] Inoue T, Junpei Y, Itoh S et al. Spatiotemporal observation of light propagation in a three-dimensional scattering medium[J]. Scientific Reports, 11, 21890(2021).
[33] Kakue T, Tosa K, Yuasa J et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 479-485(2012).
[34] Saiki T, Hosobata T, Kono Y et al. Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror[J]. Optics Express, 28, 31914-31922(2020).
[35] Touil M, Idlahcen S, Becheker R et al. Acousto-optically driven lensless single-shot ultrafast optical imaging[J]. Light: Science & Applications, 11, 66(2022).
[36] Xie C, Meyer R, Froehly L et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J]. Light: Science & Applications, 10, 126(2021).
[37] Gao G L, He K, Tian J S et al. Ultrafast all-optical solid-state framing camera with picosecond temporal resolution[J]. Optics Express, 25, 8721-8729(2017).
[38] Yang Q, Wang T, Gao G L et al. Ultrafast time-response characteristics of AlGaAs materials[J]. Proceedings of SPIE, 10843, 108430W(2019).
[39] Fan Y P, Li J Z, Xu S X et al. A single-frame full spatiotemporal field distribution measurement method[J]. Optik, 127, 11636-11643(2016).
[40] Eichler H J, Günter P, Pohl D W[M]. Laser-induced dynamic gratings(2013).
[41] Si Z, Shen X, Zhu J X et al. All-reflective self-referenced spectral interferometry for single-shot measurement of few-cycle femtosecond pulses in a broadband spectral range[J]. Chinese Optics Letters, 18, 021202(2020).
[42] Li Z Y, Pai C H, Chang Y Y et al. Single-shot visualization of evolving, light-speed structures by multiobject-plane phase-contrast imaging[J]. Optics Letters, 38, 5157-5160(2013).
[43] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).
[44] Wang X L, Zhai H C, Mu G G. Pulsed digital holography system recording ultrafast process of the femtosecond order[J]. Optics Letters, 31, 1636-1638(2006).
[45] Li Z M, Borggren J, Berrocal E et al. Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME)[J]. Combustion and Flame, 192, 160-169(2018).
[46] Dorozynska K, Kornienko V, Aldén M et al. A versatile, low-cost, snapshot multidimensional imaging approach based on structured light[J]. Optics Express, 28, 9572-9586(2020).
[47] Ek S, Kornienko V, Kristensson E. Long sequence single-exposure videography using spatially modulated illumination[J]. Scientific Reports, 10, 18920(2020).
[48] Cai W W, Wang X L, Yu T. Spatial-frequency encoded imaging of multangular and multispectral images[J]. The Review of Scientific Instruments, 92, 015111(2021).
[49] Dong J L, You P, Tomasino A et al. Single-shot ultrafast terahertz photography[J]. Nature Communications, 14, 1704(2023).
[50] Gragston M, Smith C, Kartashov D et al. Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture[J]. Optics Express, 26, 28441-28452(2018).
[51] Gragston M, Smith C D, Harrold J et al. Multiplexed structured image capture to increase the field of view for a single exposure[J]. OSA Continuum, 2, 225(2019).
[52] Hu C Y, Yang S G, Chen M H et al. Quadrature multiplexed structured illumination imaging[J]. IEEE Photonics Journal, 12, 6900708(2020).
[53] Yue Q Y, Cheng Z J, Han L et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena[J]. Optics Express, 25, 14182-14191(2017).
[54] Mishra Y N, Boggavarapu P, Chorey D et al. Application of FRAME for simultaneous LIF and LII imaging in sooting flames using a single camera[J]. Sensors, 20, 5534(2020).
[55] McCord W, He Z C, Williamson N et al. Two-phase accurate multiplexed structured image capture (2pAc-MUSIC)[J]. Optics and Lasers in Engineering, 142, 106621(2021).
[56] Dorozynska K, Kristensson E. Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging[J]. Optics Express, 25, 17211-17226(2017).
[57] Kornienko V, Kristensson E, Ehn A et al. Beyond MHz image recordings using LEDs and the FRAME concept[J]. Scientific Reports, 10, 16650(2020).
[58] Chen G H, Li J F, Peng Q X et al. All-optical coaxial framing photography using parallel coherence shutters[J]. Optics Letters, 42, 415-418(2017).
[59] Chen G H, Li J F, Li J. Femtosecond multiframe digital holography with parallel coherence shutters[C], Th4B.1(2019).
[60] Zeng X K, Zheng S Q, Cai Y et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2, 056002(2020).
[61] Zheng M J, Chen Z K, Wang C Y et al. The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics[J]. Journal of Shenzhen University (Science and Engineering), 39, 383-389(2022).
[64] Heshmat B, Satat G, Barsi C et al. Single-shot ultrafast imaging using parallax-free alignment with a tilted lenslet array[C], STu3E.7(2014).
[65] Claus L, Boone A, England T et al. Design and characterization of a novel 1-ns multi-frame imager for the Ultra-Fast X-ray Imager (UXI) program at Sandia National Laboratories[J]. Proceedings of SPIE, 10763, 107630M(2018).
[66] Hurd E R, Tate T, Dayton M S et al. Time Resolved Near Field (TRNF) diagnostic four-frame nanosecond gated hybrid CMOS image sensor[J]. Proceedings of SPIE, 11114, 1111413(2019).
[67] Chen H, Golick B, Palmer N et al. Upgrade of the gated laser entrance hole imager G-LEH-2 on the National Ignition Facility[J]. Review of Scientific Instruments, 92, 033506(2021).
[68] Lazovsky L, Cismas D, Allan G et al. CCD sensor and camera for 100 Mfps burst frame rate image capture[J]. Proceedings of SPIE, 5787, 184-190(2005).
[69] Tian J S. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 32, 112003(2020).
[70] Lanier T E, Cohen S J, di Nicola J M G et al. Time-gated measurements of fusion-class laser beam profiles[J]. Proceedings of SPIE, 11259, 1125915(2020).
[71] Claus L D, Sanchez M, Robertson G A et al. Design and characterization of an improved 2 ns multi-frame imager for the ultra-fast X-ray imager (UXI) program at Sandia National Laboratories[J]. Proceedings of SPIE, 10390, 103900A(2017).
[72] Wang F, Li Y L, Guan Z Y et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 34, 031021(2022).
[73] Matin A, Wang X. Compressive coded rotating mirror camera for high-speed imaging[J]. Photonics, 8, 34(2021).
[74] Lu Y, Wong T T W, Chen F et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 122, 193904(2019).
[75] Kim T, Liang J Y, Zhu L R et al. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot[J]. Science Advances, 6, eaay6200(2020).
[76] Ke J, Zhang L X, Zhou Q. Applications of compressive sensing in optical imaging[J]. Acta Optica Sinica, 40, 0111006(2020).
[77] Qi D L, Zhang S, Yang C S et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2, 014003(2020).
Get Citation
Copy Citation Text
Zhaoyu Zong, Junpu Zhao, Bo Zhang, Yanwen Xia, Ping Li, Wanguo Zheng. Research Progress of Single-Shot Ultrafast Optical Imaging[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000006
Category: Reviews
Received: Aug. 14, 2023
Accepted: Oct. 13, 2023
Published Online: May. 6, 2024
The Author Email: Wanguo Zheng (wgzheng_caep@sina.com)
CSTR:32186.14.LOP231906