Chinese Journal of Lasers, Volume. 50, Issue 8, 0802204(2023)

Distribution Mechanism of Cr Element During Laser Cladding Overlapping Process of 316L Powder on 45 Steel Substrate

Yazhou Zhang1,2,3, Honghao Ge1,2,3、*, Chenyu Jin1,2,3, Zhijun Chen1,2,3, Qunli Zhang1,2,3, and Jianhua Yao1,2,3
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, Zhejiang , China
  • 2College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang , China
  • 3Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou 310014, Zhejiang , China
  • show less
    References(29)

    [1] Yao J H[M]. Laser surface modification technology and application(2012).

    [2] Liu Y, Liu P S, Guo Y et al. Dilution rate of laser cladded ultrahigh strength steel[J]. Laser&Optoelectronics Progress, 58, 2314005(2021).

    [3] Su H, Shi T, Shi S H et al. Algorithm and implementation of laser cladding with equal overlapping ratio on free-form surface[J]. Chinese Journal of Lasers, 47, 0402008(2020).

    [4] Xu Y F, Sun Y N, Wang G J et al. Microstructure and properties of iron-based alloys coatings prepared by high-speed laser cladding[J]. Chinese Journal of Lasers, 48, 1002122(2021).

    [5] Haldar B, Saha P. Identifying defects and problems in laser cladding and suggestions of some remedies for the same[J]. Materials Today: Proceedings, 5, 13090-13101(2018).

    [6] Pang X T, Yao C W, Gong Q F et al. Influence of multilayer laser cladding on the microstructure and properties of 30CrMnSiNi2A steel substrate[J]. Chinese Journal of Lasers, 48, 0602104(2021).

    [7] Khomenko M D, Makoana N W, Mirzade F K et al. Coupled heat transfer, fluid flow and solidification kinetics for laser additive manufacturing applications[J]. Journal of Manufacturing Processes, 67, 611-618(2021).

    [8] Jelvani S, Razavi R S, Barekat M et al. Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy[J]. Optics & Laser Technology, 120, 105761(2019).

    [9] Zhou Z P, Lei Q, Yan Z et al. Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition[J]. Materials & Design, 198, 109296(2021).

    [10] Zhou S F, Dai X Q, Zheng H Z. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding[J]. Optics & Laser Technology, 44, 190-197(2012).

    [11] Qiu H X, Yu W B, Song J L et al. Numerical simulation of laser cladding 316L/H13+20%WC composite coating on H13 steel surface[J]. Laser&Optoelectronics Progress, 59, 0314002(2022).

    [12] Wang Q Y, Pei R, Liu S et al. Microstructure and corrosion behavior of different clad zones in multi-track Ni-based laser-clad coating[J]. Surface and Coatings Technology, 402, 126310(2020).

    [13] Chen L, Tao R, Lou D Y et al. Analysis of the mechanism cracking during the multipass laps cladding experiment[J]. Laser&Optoelectronics Progress, 51, 101401(2014).

    [14] Gan Z T, Yu G, He X L et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 104, 28-38(2017).

    [15] Barr C, Sun S D, Easton M et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels[J]. Surface and Coatings Technology, 340, 126-136(2018).

    [16] Xu H Z, Ge H H, Wang J F et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel[J]. Chinese Journal of Lasers, 47, 1202004(2020).

    [17] An X L, Wang Y L, Jiang F L et al. Influence of lap ratio on temperature field and residual stress distribution of 42CrMo laser cladding[J]. Chinese Journal of Lasers, 48, 1002110(2021).

    [18] Zhang C W, Ge H H, Fang H et al. Effect of solute redistribution coefficient on solute distribution in laser cladding[J]. Chinese Journal of Lasers, 49, 0202012(2022).

    [19] Ge H H, Ren F L, Li J et al. Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metallurgical and Materials Transactions A, 48, 1139-1150(2017).

    [20] He X L, Song L J, Yu G et al. Solute transport and composition profile during direct metal deposition with coaxial powder injection[J]. Applied Surface Science, 258, 898-907(2011).

    [21] Wu M H, Ludwig A, Kharicha A. A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot[J]. Applied Mathematical Modelling, 41, 102-120(2017).

    [22] Wang T, Wu M H, Ludwig A et al. Modelling the thermosolutal convection, shrinkage flow and grain movement of globular equiaxed solidification using a three phase model[J]. International Journal of Cast Metals Research, 18, 221-228(2005).

    [23] Wu M H, Fjeld A, Ludwig A. Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: model description[J]. Computational Materials Science, 50, 32-42(2010).

    [24] Panda B K, Sarkar S, Nath A K. 2D thermal model of laser cladding process of Inconel 718[J]. Materials Today: Proceedings, 41, 286-291(2021).

    [25] Wirth F, Arpagaus S, Wegener K. Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation[J]. Additive Manufacturing, 21, 369-382(2018).

    [26] Jiang Y C, Cheng Y H, Zhang X C et al. Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process[J]. Optik, 203, 164044(2020).

    [27] Ge H H, Xu H Z, Wang J F et al. Investigation on composition distribution of dissimilar laser cladding process using a three-phase model[J]. International Journal of Heat and Mass Transfer, 170, 120975(2021).

    [28] Li J, Wu M H, Hao J et al. Simulation of channel segregation using a two-phase columnar solidification model-Part I: model description and verification[J]. Computational Materials Science, 55, 407-418(2012).

    [29] Li J, Wu M H, Hao J et al. Simulation of channel segregation using a two-phase columnar solidification model-Part II: mechanism and parameter study[J]. Computational Materials Science, 55, 419-429(2012).

    Tools

    Get Citation

    Copy Citation Text

    Yazhou Zhang, Honghao Ge, Chenyu Jin, Zhijun Chen, Qunli Zhang, Jianhua Yao. Distribution Mechanism of Cr Element During Laser Cladding Overlapping Process of 316L Powder on 45 Steel Substrate[J]. Chinese Journal of Lasers, 2023, 50(8): 0802204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Jun. 28, 2022

    Accepted: Sep. 7, 2022

    Published Online: Mar. 28, 2023

    The Author Email: Ge Honghao (gehh@zjut.edu.cn)

    DOI:10.3788/CJL221000

    Topics