NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040013(2023)

Transport model study of conserved charge fluctuations and QCD phase transition in heavy-ion collisions

Qian CHEN1...2,3,4, Guoliang MA1,2,3,4,*, and Jinhui CHEN12,** |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
  • 2Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(151)

    [1] Gross D J, Wilczek F. Ultraviolet behavior of non-abelian gauge theories[J]. Physical Review Letters, 30, 1343-1346(1973).

    [2] David Politzer H. Reliable perturbative results for strong interactions?[J]. Physical Review Letters, 30, 1346-1349(1973).

    [3] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).

    [4] Shanmugam K T, Chan I, Morandi C. Regulation of nitrogen fixation. nitrogenase-derepressed mutants of Klebsiella pneumoniae[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 408, 101-111(1975).

    [5] Bzdak A, Koch V. Mapping the QCD phase diagram with statistics-friendly distributions[J]. Physical Review C, 100, 051902(2019).

    [6] Bzdak A, Esumi S, Koch V et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).

    [7] Bazavov A, Bhattacharya T, DeTar C et al. The equation of state in (2+1)-flavor QCD[J]. Physical Review D, 90, 094503(2014).

    [8] Bellwied R, Borsanyi S, Fodor Z et al. Is there a flavor hierarchy in the deconfinement transition of QCD?[J]. Physical Review Letters, 111, 202302(2013).

    [9] Borsanyi S, Fodor Z, Katz S D et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?[J]. Physical Review Letters, 113, 052301(2014).

    [10] Ding H T, Karsch F, Mukherjee S. Thermodynamics of strong-interaction matter from Lattice QCD[J]. International Journal of Modern Physics E, 24, 1530007(2015).

    [11] Aoki Y, Endrodi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).

    [12] Aoki Y, Borsanyi S, Durr S et al. The QCD transition temperature: results with physical masses in the continuum limit II[J]. Journal of High Energy Physics, 2009, 088(2009).

    [13] Bazavov A, Bhattacharya T, Cheng M et al. The chiral and deconfinement aspects of the QCD transition[J]. Physical Review D, 85, 054503(2012).

    [14] Ejiri S. Canonical partition function and finite density phase transition in lattice QCD[J]. Physical Review D, 78, 074507(2008).

    [15] Alford M, Rajagopal K, Wilczek F. QCD at finite baryon density: nucleon droplets and color superconductivity[J]. Physics Letters B, 422, 247-256(1998).

    [16] Skokov V, Friman B, Redlich K. The renormalization group and quark number fluctuations in the Polyakov loop extended quark-meson model at finite baryon density[J]. Physical Review C, 83, 054904(2011).

    [17] Stephanov M A. QCD phase diagram and the critical point[J]. International Journal of Modern Physics A, 20, 4387-4392(2005).

    [18] Karsch F, Redlich K. Has Tc been measured by heavy ion experiments?[J]. Physical Review D, 84, 051504(2011).

    [19] Stoecker H. Collective flow signals the quark gluon plasma[J]. Nuclear Physics A, 750, 121-147(2005).

    [20] Song H, Zhou Y, Gajdosova K. Collective flow and hydrodynamics in large and small systems at the LHC[J]. Nuclear Science and Techniques, 28, 99(2017).

    [21] Lacey R A. Indications for a critical end point in the phase diagram for hot and dense nuclear matter[J]. Physical Review Letters, 114, 142301(2015).

    [22] Sun K J, Chen L W, Ko C M et al. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 774, 103-107(2017).

    [23] Yu N, Zhang D, Luo X. Search for the QCD critical point by transverse velocity dependence of anti-deuteron to deuteron ratio[J]. Chinese Physics C, 44, 014002(2020).

    [24] Shao T, Chen J, Ko C M et al. Probing QCD critical fluctuations from the yield ratio of strange hadrons in relativistic heavy-ion collisions[J]. Physics Letters B, 801, 135177(2020).

    [25] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [26] Abdallah M S, Adam J, Adamczyk L et al. Cumulants and correlation functions of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 104, 024902(2021).

    [27] Nayak T K. Study of the fluctuations of net-charge and net-protons using higher order moments[J]. Nuclear Physics A, 830, 555c-558c(2009).

    [28] Luo X. Probing the QCD critical point by higher moments of net-proton multiplicity distributions at STAR[J]. Open Physics, 10, 1372-1374(2012).

    [29] Zhang Y, STAR Collaboration. QCD critical point and net-proton number fluctuations at RHIC-STAR[J]. EPJ Web of Conferences, 259, 10002(2022).

    [30] MA Yugang. Annual review of the advances in nuclear physics[J]. Science & Technology Review, 41, 14-29(2023).

    [31] LUO Xiaofeng, LIU Feng, XU Nu. Quark soup cooking at trillions of degrees: experimental study on the phase structure of nuclear matter and the quantum chromodynamics critical point[J]. Physics, 50, 98-107(2021).

    [32] ZHANG Yu, ZHANG Dingwei, LUO Xiaofeng. Experimental study of the QCD phase diagram in relativistic heavy-ion collisions[J]. Nuclear Techniques, 46, 040001(2023).

    [33] XU Kun, HUANG Mei. QCD critical end point and baryon number fluctuation[J]. Nuclear Techniques, 46, 040005(2023).

    [34] YIN Shi, TAN Yangyang, FU Weijie. Critical phenomena and functional renormalization group[J]. Nuclear Techniques, 46, 040002(2023).

    [35] Zhang H, Hou D, Kojo T et al. Functional renormalization group study of the Quark-Meson model with Ω meson[J]. Physical Review D, 96, 114029(2017).

    [36] Mitter M, Pawlowski J M, Strodthoff N. Chiral symmetry breaking in continuum QCD[J]. Physical Review D, 91, 054035(2015).

    [37] Herbst T K, Mitter M, Pawlowski J M et al. Thermodynamics of QCD at vanishing density[J]. Physics Letters B, 731, 248-256(2014).

    [38] Fu W, Pawlowski J M, Rennecke F. The QCD phase structure at finite temperature and density[J]. Physical Review D, 101, 054032(2020).

    [39] Fukushima K. Chiral effective model with the Polyakov loop[J]. Physics Letters B, 591, 277-284(2004).

    [40] Pisarski R D, Skokov V V. Chiral matrix model of the semi-Quark Gluon Plasma in QCD[J]. Physical Review D, 94, 034015(2016).

    [41] Li Z, Chen Y, Li D et al. Locating the QCD critical end point through the peaked baryon number susceptibilities along the freeze-out line[J]. Chinese Physics C, 42, 013103(2018).

    [42] Luo X, Shi S, Xu N et al. A study of the properties of the QCD phase diagram in high-energy nuclear collisions[J]. Particles, 3, 278-307(2020).

    [43] DING Hengtong, LI Shengtai, LIU Junhong. Progress on QCD properties in strong magnetic fields from lattice QCD[J]. Nuclear Techniques, 46, 040008(2023).

    [44] LI Fupeng, PANG Longgang, WANG Xinnian. Application of machine learning to the study of QCD transition in heavy ion collisions[J]. Nuclear Techniques, 46, 040014(2023).

    [45] WU Shanjin, SONG Huichao. Critical dynamical fluctuations near the QCD critical point[J]. Nuclear Techniques, 46, 040004(2023).

    [46] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).

    [47] Stephanov M A. On the sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).

    [48] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).

    [49] Cheng M, Hegde P, Jung C et al. Baryon number, strangeness and electric charge fluctuations in QCD at high temperature[J]. Physical Review D, 79, 074505(2009).

    [50] Gavai R V, Gupta S. Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions[J]. Physics Letters B, 696, 459-463(2011).

    [51] Chen L Z, Zhao Y Y, Wu J et al. The sixth order cumulant of net-proton number in Binomial distribution at sNN= 200 GeV[J]. Chinese Physics C, 45, 104103(2021).

    [52] Ceglowski W S, Ercegrovich C D, Pearson N S. Effects of pesticides on the reticuloendothelial system[J]. Advances in Experimental Medicine and Biology, 121, 569-576(1979).

    [53] Beck M L, Freihaut B, Henry R et al. A serum haemagglutinating property dependent upon polycarboxyl groups[J]. British Journal of Haematology, 29, 149-156(1975).

    [54] Gupta S, Luo X F, Mohanty B et al. Scale for the phase diagram of quantum chromodynamics[J]. Science, 332, 1525-1528(2011).

    [55] Bazavov A, Ding H T, Hegde P et al. Freeze-out conditions in heavy ion collisions from QCD thermodynamics[J]. Physical Review Letters, 109, 192302(2012).

    [56] Fukushima K, Hatsuda T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 74, 014001(2011).

    [57] Aboona B E, Adam J, Adamczyk L et al. Beam energy dependence of fifth and sixth-order net-proton number fluctuations in Au+Au collisions at RHIC[J]. Physical Review Letters, 130, 082301(2023).

    [58] MA Yugang, XU Nu, LIU Feng. Study of the QCD phase structure at HIAF[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 120-128(2020).

    [59] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).

    [60] Adam J, Adamczyk L, Adams J R et al. Nonmonotonic energy dependence of net-proton number fluctuations[J]. Physical Review Letters, 126, 092301(2021).

    [61] Pandav A. Measurement of cumulants of conserved charge multiplicity distributions in Au+Au collisions from the STAR experiment[J]. Nuclear Physics A, 1005, 121936(2021).

    [62] Thäder J. Higher moments of net-particle multiplicity distributions[J]. Nuclear Physics A, 956, 320-323(2016).

    [63] Abdallah M S, Aboona B E, Adam J et al. Measurements of proton high-order cumulants in sNN=3 GeV Au+Au collisions and implications for the QCD critical point[J]. Physical Review Letters, 128, 202303(2022).

    [64] Luo X. Search for the QCD critical point by higher moments of net-proton multiplicity distributions at STAR[J]. Nuclear Physics A, 904–905, 911c-914c(2013).

    [65] Luo X F, Mohanty B, Ritter H G et al. Energy dependence of high moments for net-proton distributions[J]. Journal of Physics G: Nuclear and Particle Physics, 37, 094061(2010).

    [66] Ling B, Stephanov M A. Acceptance dependence of fluctuation measures near the QCD critical point[J]. Physical Review C, 93, 034915(2016).

    [67] Kitazawa M, Luo X. Properties and uses of factorial cumulants in relativistic heavy-ion collisions[J]. Physical Review C, 96, 024910(2017).

    [68] Bzdak A, Koch V, Strodthoff N. Cumulants and correlation functions versus the QCD phase diagram[J]. Physical Review C, 95, 054906(2017).

    [69] Chen Q, Wang H, Ma G L. Probing fluctuations and correlations of strangeness by net-kaon cumulants in Au+Au collisions at sNN= 7.7 GeV[J]. Physical Review C, 107, 034910(2023).

    [70] Lin Y, Chen L, Li Z. Correlation functions of net-proton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider from a multiphase transport model[J]. Physical Review C, 96, 044906(2017).

    [71] Lin Z W, Ko C M, Li B A et al. Multiphase transport model for relativistic heavy ion collisions[J]. Physical Review C - Nuclear Physics, 72, 064901(2005).

    [72] Ma G L, Lin Z W. Predictions for sNN=5.02 TeV Pb+Pb collisions from a multi-phase transport model[J]. Physical Review C, 93, 054911(2016).

    [73] Ma G L, Zhang B. Effects of final state interactions on charge separation in relativistic heavy ion collisions[J]. Physics Letters B, 700, 39-43(2011).

    [74] Ma G L. Dijet asymmetry in Pb+Pb collisions at sNN= 2.76 TeV within a multiphase transport model[J]. Physical Review C, 87, 064901(2013).

    [75] Bozek P, Bzdak A, Ma G L. Rapidity dependence of elliptic and triangular flow in proton-nucleus collisions from collective dynamics[J]. Physics Letters B, 748, 301-305(2015).

    [76] Bzdak A, Ma G L. Elliptic and triangular flow in p+Pb and peripheral Pb+Pb collisions from parton scatterings[J]. Physical Review Letters, 113, 252301(2014).

    [77] NIE Maowu, MA Guoliang. Full jet in a multi-phase transport model[J]. Nuclear Techniques, 37, 100519(2014).

    [78] MA Guoliang. Transport model studies on relativistic heavy-ion collisions[J]. Nuclear Physics Review, 34, 4(2017).

    [79] Wang X N, Gyulassy M. HIGING: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions[J]. Physical Review D, Particles and Fields, 44, 3501-3516(1991).

    [80] Wang X N, Gyulassy M. HIJING 1.0: a Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions[J]. Computer Physics Communications, 83, 307-331(1994).

    [81] Sjostrand T, Mrenna S, Skands P. PYTHIA 6.4 physics and manual[J]. Journal of High Energy Physics, 2006, 026(2006).

    [82] Zhang B. ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions[J]. Computer Physics Communications, 109, 193-206(1998).

    [83] Li B A, Ko C M. Formation of superdense hadronic matter in high energy heavy-ion collisions[J]. Physical Review C, 52, 2037-2063(1995).

    [84] He Y, Lin Z W. Improved quark coalescence for a multi-phase transport model[J]. Physical Review C, 96, 014910(2017).

    [85] Luo X. Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions[J]. Physical Review C, 91, 034907(2015).

    [86] Luo X, Xu J, Mohanty B et al. Volume fluctuation and autocorrelation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 40, 105104(2013).

    [87] He S, Luo X. Event-by-event efficiency fluctuations and efficiency correction for cumulants of superposed multiplicity distributions in relativistic heavy-ion collision experiments[J]. Chinese Physics C, 42, 104001(2018).

    [88] Chen L Z, Chen Y, Wu Y F. Finite-size behavior near the critical point of QCD phase-transition[J]. Chinese Physics C, 38, 104103(2014).

    [89] Chen Q, Ma G L. Dynamical development of proton cumulants and correlation functions in Au+Au collisions at sNN=7.7 GeV from a multiphase transport model[J]. Physical Review C, 106, 014907(2022).

    [90] Tarnowsky T J, Westfall G D. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions[J]. Physics Letters B, 724, 51-55(2013).

    [91] Huang L, Ma G L. Study on higher moments of net-charge multiplicity distributions using a multiphase transport model[J]. Chinese Physics C, 45, 074110(2021).

    [92] Braun-Munzinger P, Redlich K, Stachel J. Particle production in heavy ion collisions[M]. Quark–Gluon Plasma 3. World Scientific, 491(2004).

    [93] Asakawa M, Heinz U, Muller B. Fluctuation probes of quark deconfinement[J]. Physical Review Letters, 85, 2072-2075(2000).

    [94] Asakawa M, Ejiri S, Kitazawa M. Third moments of conserved charges as probes of QCD phase structure[J]. Physical Review Letters, 103, 262301(2009).

    [95] Wang H S, Ma G L, Lin Z W et al. Thermodynamics of partonic matter in relativistic heavy-ion collisions from a multiphase transport model[J]. Physical Review C, 105, 034912(2022).

    [96] Bzdak A, Koch V, Strodthoff N. Cumulants and correlation functions vs the QCD phase diagram[J]. Physical Review C, 95, 054906(2017).

    [97] Bzdak A, Koch V. Rapidity dependence of proton cumulants and correlation functions[J]. Physical Review C, 96, 054905(2017).

    [98] Brewer J, Mukherjee S, Rajagopal K et al. Searching for the QCD critical point via the rapidity dependence of cumulants[J]. Physical Review C, 98, 061901(2018).

    [99] Mukherjee S, Venugopalan R, Yin Y. Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram[J]. Physical Review Letters, 117, 222301(2016).

    [100] Wu S, Wu Z, Song H. Universal scaling of the sigma field and net-protons from Langevin dynamics of model A[J]. Physical Review C, 99, 064902(2019).

    [101] Asakawa M, Kitazawa M, Müller B. Issues with search for critical point in QCD with relativistic heavy ion collisions[J]. Physical Review C, 101, 034913(2020).

    [102] Ohnishi Y, Kitazawa M, Asakawa M. Thermal blurring of event-by-event fluctuations provoked by rapidity conversion[J]. Physical Review C, 94, 044905(2016).

    [103] Sakaida M, Asakawa M, Fujii H et al. Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[J]. Physical Review C, 95, 064905(2017).

    [104] Nahrgang M, Bluhm M, Schaefer T et al. Diffusive dynamics of critical fluctuations near the QCD critical point[J]. Physical Review D, 99, 116015(2019).

    [105] Bzdak A, Koch V, Skokov V. Correlated stopping, proton clusters and higher order proton cumulants[J]. The European Physical Journal C, 77, 288(2017).

    [106] Vovchenko V, Koch V, Shen C. Proton number cumulants and correlation functions in Au-Au collisions at sNN=7.7-200 GeV from hydrodynamics[J]. Physical Review C, 105, 014904(2022).

    [107] Kitazawa M, Asakawa M. Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 85, 021901(2012).

    [108] Kitazawa M, Asakawa M. Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 86, 024904(2012).

    [109] Bzdak A, Koch V. Acceptance corrections to net baryon and net charge cumulants[J]. Physical Review C, 86, 044904(2012).

    [110] Rafelski J, Müller B. Strangeness production in the quark-gluon plasma[J]. Physical Review Letters, 48, 1066-1069(1982).

    [111] Alt C, Anticic T, Baatar B et al. Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: evidence for the onset of deconfinement[J]. Physical Review C, 77, 024903(2008).

    [112] Abelev B I, Aggarwal M M, Ahammed Z et al. Enhanced strange baryon production in Au+Au collisions compared to p+p at s = 200 GeV[J]. Physical Review C, 77, 044908(2008).

    [113] Bellwied R, Noronha-Hostler J, Parotto P et al. Freeze-out temperature from net-kaon fluctuations at energies available at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 99, 034912(2019).

    [114] Bluhm M, Nahrgang M. Freeze-out conditions from strangeness observables at RHIC[J]. The European Physical Journal C, 79, 155(2019).

    [115] Ratti C, Bellwied R, Cristoforetti M et al. Are there hadronic bound states above the QCD transition temperature?[J]. Physical Review D, 85, 014004(2012).

    [116] Bazavov A, Bhattacharya T, DeTar C E et al. Fluctuations and correlations of net baryon number, electric charge, and strangeness: a comparison of lattice QCD results with the hadron resonance gas model[J]. Physical Review D, 86, 034509(2012).

    [117] Bazavov A, Ding H T, Hegde P et al. Strangeness at high temperatures: from hadrons to quarks[J]. Physical Review Letters, 111, 082301(2013).

    [118] Karsch F, Redlich K. Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations[J]. Physics Letters B, 695, 136-142(2011).

    [119] Majumder A, Müller B. Baryonic strangeness and related susceptibilities in QCD[J]. Physical Review C, 74, 054901(2006).

    [120] Bollweg D, Goswami J, Kaczmarek O et al. Second order cumulants of conserved charge fluctuations revisited I. Vanishing chemical potentials[J]. Physical Review D, 104, 074512(2021).

    [121] Fu W J. QCD at finite temperature and density within the fRG approach: an overview[J]. Communications in Theoretical Physics, 74, 097304(2022).

    [122] Ding H T, Li S T, Shi Q et al. QCD phase structure in strong magnetic fields[J]. Acta Physica Polonica B Proceedings Supplement, 14, 403(2021).

    [123] Jin F, Ma Y G, Ma G L et al. Baryon-Strangeness correlations in Parton/Hadron transport model for Au+Au collisions at sNN=200 GeV[J]. Journal of Physics G: Nuclear and Particle Physics, 35, 044070(2008).

    [124] Koch V, Majumder A, Randrup J. Baryon-strangeness correlations: a diagnostic of strongly interacting matter[J]. Physical Review Letters, 95, 182301(2005).

    [125] Wang D F, Zhang S, Ma Y G. System size dependence of baryon-strangeness correlations in relativistic heavy ion collisions from a multiphase transport model[J]. Physical Review C, 103, 024901(2021).

    [126] Zhang S, Chen J H, Crawford H et al. Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations[J]. Physics Letters B, 684, 224-227(2010).

    [127] Chen J, Keane D, Ma Y et al. Antinuclei in heavy-ion collisions[J]. Physics Reports, 760, 1-39(2018).

    [128] Shao T, Chen J, Ko C M et al. Yield ratio of hypertriton to light nuclei in heavy-ion collisions from sNN=4.9 GeV to 2.76 TeV[J]. Chinese Physics C, 44, 114001(2020).

    [129] Adamczyk L, Adams J, Adkins J et al. Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters B, 785, 551-560(2018).

    [130] Yu N, Liu F, Wu K. Energy and centrality dependence of chemical freeze-out thermodynamics parameters[J]. Physical Review C, 90, 024913(2014).

    [131] Xu J, Ko C M. Chemical freeze-out in relativistic heavy-ion collisions[J]. Physics Letters B, 772, 290-293(2017).

    [132] Shao T, Chen J, Ko C M et al. Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model[J]. Physical Review C, 102, 014906(2020).

    [133] Zhou C, Xu J, Luo X F et al. Cumulants of event-by-event net-strangeness distributions in Au+Au collisions at sNN=7.7-200 GeV within an UrQMD model[J]. Physical Review C, 96, 014909(2017).

    [134] Fu W J, Liu Y X, Wu Y L. Fluctuations and correlations of conserved charges in QCD at finite temperature with effective models[J]. Physical Review D, 81, 014028(2010).

    [135] Chahal N, Dutt S, Kumar A. Quark matter properties and fluctuations of conserved charges in (2+1)-flavored quark model[J]. Chinese Physics C, 46, 063104(2022).

    [136] Jin X H, Chen J H, Lin Z W et al. Explore the QCD phase transition phenomena from a multiphase transport model[J]. Science China Physics, Mechanics & Astronomy, 62, 11012(2019).

    [137] Jin X H, Chen J H, Ma Y G et al. Ω and ϕ production in Au+Au collisions at sNN=11.5 and 7.7 GeV in a dynamical quark coalescence model[J]. Nuclear Science and Techniques, 29, 54(2018).

    [138] Adamczyk L, Adkins J K, Agakishiev G et al. Energy dependence of moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 112, 032302(2014).

    [139] Vovchenko V, Jiang L, Gorenstein M I et al. Critical point of nuclear matter and beam energy dependence of net proton number fluctuations[J]. Physical Review C, 98, 024910(2018).

    [140] Hatta Y, Stephanov M A. Proton number fluctuation as a signal of the QCD critical end-point[J]. Physical Review Letters, 91, 102003(2003).

    [141] Steinheimer J, Randrup J. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions[J]. Physical Review Letters, 109, 212301(2012).

    [142] Steinheimer J, Randrup J, Koch V. Non-equilibrium phase transition in relativistic nuclear collisions: importance of the equation of state[J]. Physical Review C, 89, 034901(2014).

    [143] Herold C, Nahrgang M, Mishustin I et al. Formation of droplets with high baryon density at the QCD phase transition in expanding matter[J]. Nuclear Physics A, 925, 14-24(2014).

    [144] Li F, Ko C M. Spinodal instabilities of baryon-rich quark-gluon plasma in the PNJL model[J]. Physical Review C, 93, 035205(2016).

    [145] Li F, Ko C M. Spinodal instabilities of baryon-rich quark matter in heavy ion collisions[J]. Physical Review C, 95, 055203(2017).

    [146] Ko C M. Theoretical perspective on strangeness production[J]. EPJ Web of Conferences, 171, 03002(2018).

    [147] Sun K J, Chen L W. Analytical coalescence formula for particle production in relativistic heavy-ion collisions[J]. Physical Review C, 95, 044905(2017).

    [148] Song T, Plumari S, Greco V et al. Partonic mean-field effects on matter and antimatter elliptic flows[J]. Nuclear Physics A, 928, 234-246(2014).

    [149] Afanasiev S V, Anticic T, Barna D et al. Energy dependence of pion and kaon production in central Pb+Pb collisions[J]. Physical Review C, 66, 054902(2002).

    [150] Cleymans J, Oeschler H, Redlich K et al. Comparison of chemical freeze-out criteria in heavy-ion collisions[J]. Physical Review C, 73, 034905(2006).

    [151] Wheaton S, Cleymans J, Hauer M. THERMUS—a thermal model package for ROOT[J]. Computer Physics Communications, 180, 23(2009).

    Tools

    Get Citation

    Copy Citation Text

    Qian CHEN, Guoliang MA, Jinhui CHEN. Transport model study of conserved charge fluctuations and QCD phase transition in heavy-ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 14, 2023

    Accepted: --

    Published Online: Apr. 27, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.040013

    Topics