Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1468(2023)

Object detection algorithm based on adaptive focal CRIoU loss

Zhen-jiu XIAO1, Hao-ze ZHAO2, Li-li ZHANG2, Yu XIA3, Jie-long GUO4、*, Hui YU4, Cheng-long LI2, and Li-wen WANG2
Author Affiliations
  • 1College of Software Engineering,Liaoning Technical University,Huludao 125000,China
  • 2Air Ammunition Research Institute Co. Ltd.,NORINCO Group,Haerbin150000,China
  • 3Shanghai Institute of Aerospace System Engineer,Shanghai 201100,China
  • 4Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • show less
    References(27)

    [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C], 1097-1105(2012).

    [19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv(2020).

    [20] GE Z, LIU S T, WANG F et al. YOLOX: Exceeding YOLO series in 2021[J/OL]. arXiv(2021).

    [24] SERMANET P, EIGEN D, ZHANG X et al. Overfeat: Integrated recognition, localization and detection using convolutional networks[C](2014).

    Tools

    Get Citation

    Copy Citation Text

    Zhen-jiu XIAO, Hao-ze ZHAO, Li-li ZHANG, Yu XIA, Jie-long GUO, Hui YU, Cheng-long LI, Li-wen WANG. Object detection algorithm based on adaptive focal CRIoU loss[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1468

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 6, 2023

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Jie-long GUO (gjl@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2023-0005

    Topics