Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1468(2023)

Object detection algorithm based on adaptive focal CRIoU loss

Zhen-jiu XIAO1, Hao-ze ZHAO2, Li-li ZHANG2, Yu XIA3, Jie-long GUO4、*, Hui YU4, Cheng-long LI2, and Li-wen WANG2
Author Affiliations
  • 1College of Software Engineering,Liaoning Technical University,Huludao 125000,China
  • 2Air Ammunition Research Institute Co. Ltd.,NORINCO Group,Haerbin150000,China
  • 3Shanghai Institute of Aerospace System Engineer,Shanghai 201100,China
  • 4Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • show less
    Figures & Tables(23)
    Difference of regression process of different boundary box loss functions
    Loss changes of different γ of Focal Loss
    Schematic diagram of A-CRIoU penalty items
    Difference of loss in different regression states under inclusion
    Comparison of NMS and a-criou-nms in dense target
    Comparison of regression simulation convergence for different loss function
    Distribution of the last round regression error values of different loss function
    Distribution of anchors
    YOLOv3 convergence of different loss functions on PASCAL VOC2012
    Comparison of AF-CRIoU and NMS methods with different thresholds under AP75 condition
    Comparison of AF-CRIoU and NMS methods with different thresholds under AP50 condition
    Convergence of loss in the last 100 rounds of training
    Average intersection ratio of the last 100 rounds
    Effect diagram 1 of helmet detection
    Effect diagram 2 of helmet detection
    Effect diagram 3 of helmet detection
    • Table 1. Experimental hardware environment

      View table
      View in Article

      Table 1. Experimental hardware environment

      实验硬件环境环境配置
      核心处理器Intel Xeon Gold 5220@2.2 GHz
      内存容量256 GB
      显卡型号NVIDIA GeForce RTX 2080Ti
    • Table 2. Experimental software environment

      View table
      View in Article

      Table 2. Experimental software environment

      实验软件环境环境配置
      服务器系统Linux 7.6.1810
      编程语言Python 3.7.11
      深度学习框架Pytorch 1.7.1
      开发工具PyCharm 11.0.11;Matlab
      CUDA版本10.1.243
    • Table 3. Comparison of YOLOv3 accuracy under different threshold

      View table
      View in Article

      Table 3. Comparison of YOLOv3 accuracy under different threshold

      Loss functionAP75/%AP50/%
      AF-CRIoU65.4559.1
      SSE60.3154.7
      Relative improv.8.528.04
      IoU62.5156.51
      Relative improv.4.74.58
      GIoU63.4357.68
      Relative improv.3.182.46
      CIoU63.9758.13
      Relative improv.2.311.67
    • Table 4. Comparison of Faster RCNN accuracy under diffe‑rent threshold

      View table
      View in Article

      Table 4. Comparison of Faster RCNN accuracy under diffe‑rent threshold

      Loss functionAP75/%AP50/%
      AF-CRIoU56.6152.28
      Smooth L1 Loss53.9448.43
      Relative improv.4.947.9
      IoU54.6248.78
      Relative improv.3.647.18
      GIoU54.9348.93
      Relative improv.3.062.29
      CIoU55.2150.91
      Relative improv.2.532.69
    • Table 5. Comparison of experimental results using different non maximum suppression methods and loss functions under AP75 conditions

      View table
      View in Article

      Table 5. Comparison of experimental results using different non maximum suppression methods and loss functions under AP75 conditions

      NMSA-CRIoU-NMSAF-CRIoUAP75/%
      65.09
      65.23
      65.45
      65.47
    • Table 6. Comparison of experimental results using different non maximum suppression methods and loss functions under AP50 conditions

      View table
      View in Article

      Table 6. Comparison of experimental results using different non maximum suppression methods and loss functions under AP50 conditions

      NMSA-CRIoU-NMSAF-CRIoUAP50/%
      58.52
      58.90
      59.10
      59.13
    • Table 7. Comparison of detection accuracy

      View table
      View in Article

      Table 7. Comparison of detection accuracy

      Losshat/%nohat/%mAP/%
      IoU68.3165.7267.01
      GIoU70.4769.8770.17
      CIoU72.9271.3872.15
      AF-CRIoU74.2872.5773.43
    Tools

    Get Citation

    Copy Citation Text

    Zhen-jiu XIAO, Hao-ze ZHAO, Li-li ZHANG, Yu XIA, Jie-long GUO, Hui YU, Cheng-long LI, Li-wen WANG. Object detection algorithm based on adaptive focal CRIoU loss[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1468

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 6, 2023

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Jie-long GUO (gjl@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2023-0005

    Topics