Acta Optica Sinica, Volume. 44, Issue 10, 1026011(2024)

Spatio-Temporal Control of Ultra-Fast Pulses Using Metasurfaces (Invited)

Lu Chen1,***... Mingjie He2, Qiang Wu1,2,**, and Jingjun Xu12,* |Show fewer author(s)
Author Affiliations
  • 1School of Physics, Nankai University, Tianjin 300071, China
  • 2TEDA Institute of Applied Physics, Nankai University, Tianjin 300457, China
  • show less
    References(110)

    [1] Cavalieri A L, Müller N, Uphues T et al. Attosecond spectroscopy in condensed matter[J]. Nature, 449, 1029-1032(2007).

    [2] Lloyd-Hughes J, Oppeneer P M, dos Santos T D et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap[J]. Journal of Physics: Condensed Matter, 33, 353001(2021).

    [3] Zewail A H. Laser femtochemistry[J]. Science, 242, 1645-1653(1988).

    [4] Nibbering E T J, Fidder H, Pines E. Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics[J]. Annual Review of Physical Chemistry, 56, 337-367(2005).

    [5] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [6] Sundström V. Femtobiology[J]. Annual Review of Physical Chemistry, 59, 53-77(2008).

    [7] Dausinger F, Lichtner F, Lubatschowski H[M]. Femtosecond technology for technical and medical applications(2004).

    [8] Kohli V, Elezzabi A Y, Acker J P. Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation[J]. Lasers in Surgery and Medicine, 37, 227-230(2005).

    [9] Warren W S, Rabitz H, Dahleh M. Coherent control of quantum dynamics: the dream is alive[J]. Science, 259, 1581-1589(1993).

    [10] Siegrist F, Gessner J A, Ossiander M et al. Light-wave dynamic control of magnetism[J]. Nature, 571, 240-244(2019).

    [11] Guo Z N, Ge P P, Fang Y Q et al. Probing molecular frame Wigner time delay and electron wavepacket phase structure of CO molecule[J]. Ultrafast Science, 2022, 9802917(2022).

    [12] Metcalf A J, Anderson T, Bender C F et al. Stellar spectroscopy in the near-infrared with a laser frequency comb[J]. Optica, 6, 233-239(2019).

    [13] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [14] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [15] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [16] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).

    [17] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).

    [18] Maurer C, Jesacher A, Bernet S et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 5, 81-101(2011).

    [19] Chen Z G, Segev M, Christodoulides D N. Optical spatial solitons: historical overview and recent advances[J]. Reports on Progress in Physics, 75, 086401(2012).

    [20] Rubinsztein-Dunlop H, Forbes A, Berry M V et al. Roadmap on structured light[J]. Journal of Optics, 19, 013001(2017).

    [21] Chen S Q, Li Z C, Liu W W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, e1802458(2019).

    [22] Pan Y, Ding J P, Wang H T. Manipulation on novel vector optical fields: introduction, advances and applications[J]. Acta Optica Sinica, 39, 0126001(2019).

    [23] Tull J X, Dugan M A, Warren W S. High-resolution, ultrafast laser pulse shaping and its applications[M]. Advances in magnetic and optical resonance(1997).

    [24] Monmayrant A, Weber S, Chatel B. A newcomer's guide to ultrashort pulse shaping and characterization[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 43, 103001(2010).

    [25] Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 284, 3669-3692(2011).

    [26] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [27] Yessenov M, Hall L A, Schepler K L et al. Space-time wave packets[J]. Advances in Optics and Photonics, 14, 455(2022).

    [28] Shen Y J, Zhan Q W, Wright L G et al. Roadmap on spatiotemporal light fields[J]. Journal of Optics, 25, 093001(2023).

    [29] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [30] Korobenko A, Milner A A, Hepburn J W et al. Rotational spectroscopy with an optical centrifuge[J]. Physical Chemistry Chemical Physics, 16, 4071-4076(2014).

    [31] McIver J W, Hsieh D, Steinberg H et al. Control over topological insulator photocurrents with light polarization[J]. Nature Nanotechnology, 7, 96-100(2011).

    [32] Dai Y N, Zhou Z K, Ghosh A et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 588, 616-619(2020).

    [33] Kong F Q, Zhang C M, Bouchard F et al. Controlling the orbital angular momentum of high harmonic vortices[J]. Nature Communications, 8, 14970(2017).

    [34] Rego L, Dorney K M, Brooks N J et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum[J]. Science, 364, eaaw9486(2019).

    [35] Fan T T, Grychtol P, Knut R et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 14206-14211(2015).

    [36] Rego L, Brooks N J, Nguyen Q L D et al. Necklace-structured high-harmonic generation for low-divergence, soft X-ray harmonic combs with tunable line spacing[J]. Science Advances, 8, eabj7380(2022).

    [37] Neff J A, Athale R A, Lee S H. Two-dimensional spatial light modulators: a tutorial[J]. Proceedings of the IEEE, 78, 826-855(1990).

    [38] Yang D K, Wu S T[M]. Fundamentals of liquid crystal devices(2014).

    [39] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200(2016).

    [40] Collings P J, Goodby J W[M]. Introduction to liquid crystals: chemistry and physics(2019).

    [41] Tsai C S[M]. Guided-wave acousto-optics: Interactions, devices, and applications(1990).

    [42] Tran C D. Acousto-optic devices[J]. Analytical Chemistry, 64, 971A-981A(1992).

    [43] Goutzoulis A P[M]. Design and fabrication of acousto-optic devices(2021).

    [44] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [45] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 527, 447-470(2015).

    [46] Scholes S, Kara R, Pinnell J et al. Structured light with digital micromirror devices: a guide to best practice[J]. Optical Engineering, 59, 041202(2019).

    [47] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [48] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [49] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 8, 889-898(2014).

    [50] Minovich A E, Miroshnichenko A E, Bykov A Y et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 9, 195-213(2015).

    [51] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [52] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).

    [53] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 1, 1600064(2017).

    [54] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 81, 026401(2018).

    [55] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 21, 8-21(2018).

    [56] Kamali S M, Arbabi E, Arbabi A et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 7, 1041-1068(2018).

    [57] He Q, Sun S L, Xiao S Y et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Advanced Optical Materials, 6, 1800415(2018).

    [58] Cui T, Bai B F, Sun H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 29, 1806692(2019).

    [59] Huo P C, Zhang S, Liang Y Z et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications[J]. Advanced Optical Materials, 7, 1801616(2019).

    [60] Kang L, Jenkins R P, Werner D H. Recent progress in active optical metasurfaces[J]. Advanced Optical Materials, 7, 1801813(2019).

    [61] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [62] Zhang S Y, Wong C L, Zeng S W et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective[J]. Nanophotonics, 10, 373(2020).

    [63] Solntsev A S, Agarwal G S, Kivshar Y S. Metasurfaces for quantum photonics[J]. Nature Photonics, 15, 327-336(2021).

    [64] Yang J Y, Gurung S, Bej S et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications[J]. Reports on Progress in Physics, 85, 036101(2022).

    [65] Fan X H, Wu X G, Zhou L et al. Longitudinally encoding and decoding information in light field arrays based on metasurface[J]. Chinese Journal of Lasers, 50, 1813013(2023).

    [66] Wang X E, Xu K, Fan X H et al. Transversely dispersive multi-foci metalens based on selective spectral response structure[J]. Chinese Journal of Lasers, 50, 1813014(2023).

    [67] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [68] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [69] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [70] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [71] Chung H, Miller O D. High-NA achromatic metalenses by inverse design[J]. Optics Express, 28, 6945-6965(2020).

    [72] Shen Z X, Zhou S H, Li X N et al. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics, 2, 036002(2020).

    [73] Balli F, Sultan M, Lami S K et al. A hybrid achromatic metalens[J]. Nature Communications, 11, 3892(2020).

    [74] Wang Y J, Chen Q M, Yang W H et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 12, 5560(2021).

    [75] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [76] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Reports on Progress in Physics, 78, 024401(2015).

    [77] Wan W W, Gao J, Yang X D. Metasurface holograms for holographic imaging[J]. Advanced Optical Materials, 5, 1700541(2017).

    [78] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [79] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [80] Hu Y Q, Luo X H, Chen Y Q et al. 3D-integrated metasurfaces for full-colour holography[J]. Light: Science & Applications, 8, 86(2019).

    [81] Jiang Q, Jin G F, Cao L C. When metasurface meets hologram: principle and advances[J]. Advances in Optics and Photonics, 11, 518(2019).

    [82] Gao H, Wang Y X, Fan X H et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Science Advances, 6, eaba8595(2020).

    [83] Wu P C, Chen J W, Yin C W et al. Visible metasurfaces for on-chip polarimetry[J]. ACS Photonics, 5, 2568-2573(2018).

    [84] Arbabi E, Kamali S M, Arbabi A et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [85] Rubin N A, D'Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [86] Basiri A, Chen X H, Bai J et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light: Science & Applications, 8, 78(2019).

    [87] Thurston R, Heritage J, Weiner A et al. Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor[J]. IEEE Journal of Quantum Electronics, 22, 682-696(1986).

    [88] Divitt S, Zhu W Q, Zhang C et al. Ultrafast optical pulse shaping using dielectric metasurfaces[J]. Science, 364, 890-894(2019).

    [89] Weiner A M[M]. Ultrafast optics(2008).

    [90] Liu V, Fan S H. S4: a free electromagnetic solver for layered periodic structures[J]. Computer Physics Communications, 183, 2233-2244(2012).

    [91] Chatel B, Degert J, Girard B. Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses[J]. Physical Review A, 70, 053414(2004).

    [92] Walecki W J, Fittinghoff D N, Smirl A L et al. Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry[J]. Optics Letters, 22, 81-83(1997).

    [93] Iaconis C, Anderson M E, Walmsley I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Optics Letters, 23, 792-794(1998).

    [94] Chen L, Huo P, Song J et al. Shaping polarization within an ultrafast laser pulse using dielectric metasurfaces[J]. Optica, 10, 26-32(2023).

    [95] Chen L, Zhu W Q, Huo P C et al. Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control[J]. Science Advances, 8, eabq8314(2022).

    [96] Dorrah A H, Rubin N A, Tamagnone M et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nature Communications, 12, 6249(2021).

    [97] Chong A, Wan C H, Chen J et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 14, 350-354(2020).

    [98] Hancock S W, Zahedpour S, Goffin A et al. Free-space propagation of spatiotemporal optical vortices[J]. Optica, 6, 1547-1553(2019).

    [99] Huang J Y, Zhang J H, Zhu T F et al. Spatiotemporal differentiators generating optical vortices with transverse orbital angular momentum and detecting sharp change of pulse envelope[J]. Laser & Photonics Reviews, 16, 2100357(2022).

    [100] Shaltout A M, Lagoudakis K G, van de Groep J et al. Spatiotemporal light control with frequency-gradient metasurfaces[J]. Science, 365, 374-377(2019).

    [101] Kondakci H E, Abouraddy A F. Diffraction-free space-time light sheets[J]. Nature Photonics, 11, 733-740(2017).

    [102] Kondakci H E, Abouraddy A F. Optical space-time wave packets having arbitrary group velocities in free space[J]. Nature Communications, 10, 929(2019).

    [103] Luttmann M, Vimal M, Guer M et al. Nonlinear up-conversion of a polarization Möbius strip with half-integer optical angular momentum[J]. Science Advances, 9, eadf3486(2023).

    [104] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).

    [105] Service R F. Laser labs race for the petawatt[J]. Science, 301, 154-156(2003).

    [106] Mourou G, Tajima T. The extreme light infrastructure: optics' next horizon[J]. Optics and Photonics News, 22, 47-51(2011).

    [108] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 3, 381-387(2007).

    [109] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [110] Mao D, Wang H Q, Zhang H Z et al. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation[J]. Nature Communications, 12, 6712(2021).

    [111] Jia W H, Gao C X, Zhao Y M et al. Intracavity spatiotemporal metasurfaces[J]. Advanced Photonics, 5, 026002(2023).

    Tools

    Get Citation

    Copy Citation Text

    Lu Chen, Mingjie He, Qiang Wu, Jingjun Xu. Spatio-Temporal Control of Ultra-Fast Pulses Using Metasurfaces (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Feb. 29, 2024

    Accepted: Apr. 7, 2024

    Published Online: May. 6, 2024

    The Author Email: Chen Lu (lchen@nankai.edu.cn), Wu Qiang (wuqiang@nankai.edu.cn), Xu Jingjun (jjxu@nankai.edu.cn)

    DOI:10.3788/AOS240670

    CSTR:32393.14.AOS240670

    Topics