Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 450(2024)

Mid-wavelength infrared nBn photodetectors based on InAs/InAsSb type-II superlattice with an AlAsSb/InAsSb superlattice barrier

Yi-Fan SHAN1,2, Dong-Hai WU1,2、*, Ruo-Yu XIE1,2, Wen-Guang ZHOU1,2, Fa-Ran CHANG1, Nong LI1,2, Guo-Wei WANG1,2, Dong-Wei JIANG1,2, Hong-Yue HAO1,2, Ying-Qiang XU1,2, and Zhi-Chuan NIU1,2、**
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(32)

    [1] Kaushal H, Kaddoum G. Optical Communication in Space: Challenges and Mitigation Techniques[J]. IEEE Communications Surveys and Tutorials, 19, 57-96(2016).

    [2] Bui D A, Hauser P C. Analytical devices based on light-emitting diodes-a review of the state-of-the-art[J]. Analytica Chimica Acta, 853, 46-58(2015).

    [3] Fleming L, Gibson D, Song S G et al. Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings[J]. Surface & Coatings Technology, 336, 9-16(2018).

    [4] Klipstein P, Aronov D, Ben Ezra M et al. Recent progress in InSb based quantum detectors in Israel[J]. Infrared Physics & Technology, 59, 172-181(2013).

    [5] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 68, 2267(2005).

    [6] Alshahrani D O, Kesaria M, Anyebe E A et al. Emerging Type-II Superlattices of InAs/InAsSb and InAs/GaSb for Mid-Wavelength Infrared Photodetectors[J]. Advanced Photonics Research, 3, 2100094(2022).

    [7] Donetsky D, Belenky G, Svensson S et al. Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials[J]. Applied Physics Letters, 97, 052108(2010).

    [8] Connelly B C, Metcalfe G D, Shen H et al. Time-resolved photoluminescence study of carrier recombination and transport in type-II superlattice infrared detector materials[C], 8704, 266-274(2013).

    [9] Olson B V, Shaner E A, Kim J K et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[J]. Applied Physics Letters, 101, 092109(2012).

    [10] Hoglund L, Ting D Z, Khoshakhlagh A et al. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices[J]. Applied Physics Letters, 103, 221908(2013).

    [11] Prins A D, Lewis M K, Bushell Z L et al. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors[J]. Applied Physics Letters, 106, 171111(2015).

    [12] Manissadjian A, Rubaldo L, Rebeil Y et al. Improved IR detectors to swap heavy systems for SWaP[C], 8353, 1085-1093(2012).

    [13] Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 21, 239-257(2013).

    [14] Kinch M A. The Future of Infrared; III-Vs or HgCdTe?[J]. Journal of Electronic Materials, 44, 2969-2976(2015).

    [15] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 89, 151109(2006).

    [16] Rhiger D R, Smith E P, Kolasa B P et al. Analysis of III-V Superlattice nBn Device Characteristics[J]. Journal of Electronic Materials, 45, 4646-4653(2016).

    [17] Martyniuk P, Rogalski A. Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit[C], 8704, 564-572(2013).

    [18] Kim Y, Alotaibi S, Henini M et al. Uncooled mid-wavelength InAsSb/AlAsSb heterojunction photodetectors[J]. Apl Materials, 11, 081104(2023).

    [19] Soibel A, Ting D Z, Rafol S B et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density[J]. Applied Physics Letters, 114, 161103(2019).

    [20] Ting D Z, Soibel A, Khoshakhlagh A et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array[J]. Applied Physics Letters, 113, 021101(2018).

    [21] Ting D Z, Rafol S B, Keo S A et al. InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Focal Plane Array With Significantly Higher Operating Temperature Than InSb[J]. IEEE Photonics Journal, 10, 1-6(2018).

    [22] Haddadi A, Chevallier R, Chen G et al. Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1- xSbx type-II superlattices[J]. Applied Physics Letters, 106, 011104(2015).

    [23] Wu D H, Dehzangi A, Razeghi M. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 115, 061102(2019).

    [24] Wu D H, Li J K, Dehzangi A et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice[J]. Aip Advances, 10, 025018(2020).

    [25] Bishop G, Plis E, Rodriguez J B et al. nBn detectors based on InAs/GaSb type-II strain layer superlattice[J]. Journal of Vacuum Science & Technology B, 26, 1145-1148(2008).

    [26] Kim Y H, Lee H J, Kim Y C et al. HOT InAs/InAsSb nBn detector development for SWaP detector[C], 11741, 164-168(2021).

    [27] Deng G R, Song X B, Fan M G et al. Upside-down InAs/InAs1-xSbx type-II superlattice-based nBn mid -infrared photodetectors with an AlGaAsSb quaternary alloy barrier[J]. Optics Express, 28, 13616-13624(2020).

    [28] Jiang J K, Wang G W, Wu D H et al. High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 μm cutoff wavelength spectra[J]. Optics Express, 30, 38208-38215(2022).

    [29] Rodriguez J B, Plis E, Bishop G et al. nBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 91, 043514(2007).

    [30] Wang D, Donetsky D, Kipshidze G et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 103, 051120(2013).

    [31] Ariyawansa G, Duran J, Reyner C et al. InAs/InAsSb Strained-Layer Superlattice Mid-Wavelength Infrared Detector for High-Temperature Operation[J]. Micromachines, 10, 806(2019).

    [32] Webster P T, Riordan N A, Liu S et al. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 106, 061907(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yi-Fan SHAN, Dong-Hai WU, Ruo-Yu XIE, Wen-Guang ZHOU, Fa-Ran CHANG, Nong LI, Guo-Wei WANG, Dong-Wei JIANG, Hong-Yue HAO, Ying-Qiang XU, Zhi-Chuan NIU. Mid-wavelength infrared nBn photodetectors based on InAs/InAsSb type-II superlattice with an AlAsSb/InAsSb superlattice barrier[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 450

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 18, 2023

    Accepted: --

    Published Online: Aug. 27, 2024

    The Author Email: Dong-Hai WU (dhwu@semi.ac.cn), Zhi-Chuan NIU (zcniu@semi.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2024.04.003

    Topics