Remote Sensing Technology and Application, Volume. 39, Issue 3, 590(2024)

Object Detection in Remote Sensing Images based on YOLOX-Tiny Biased Feature Fusion Network

Zhaohua HU and Yuhui LI
Author Affiliations
  • School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing210044,China
  • show less
    References(31)

    [1] Shutao LI, Congyu LI, Xudong KANG. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25, 148-166(2021).

    [2] Qulin TAN, Yun SHAO. Application of remote sensing technology to environment pollution monitoring. Remote Sensing Technology and Application, 15, 246-251(2000).

    [3] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).

    [4] R GIRSHICK. Fast R-CNN, 1440-1448(2015).

    [5] S REN, K HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [6] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: Unified, real-time object detection, 779-788(2016).

    [7] J REDMON, A FARHADI. YOLOV3:An incremental improvement, 1-6(2018).

    [8] [8] BOCHKOVSKIYA, WANGC Y, LIAOH. YOLOv4: optimal speed and accuracy of object detection[S].arXiv Preprint arXiv: 2020, 2004.10934. DOI:10.48550/arXiv.2004.10934.

    [9] W LIU, D ANGUELOV, D ERHAN et al. SSD: Singleshot multibox detector, 21-37(2016).

    [10] Y LIN, P GOYAL, R GIRSHICK. Focal loss for dense object detection, 2980-2988(2017).

    [11] K W DUAN, S BAI, L X XIE et al. CenterNet: Keypoint triplets for object detection, 6568-6577(2019).

    [12] W ZHANG, S H WANG, S THACHAN et al. Deconv R-CNN for small object detection on remote sensing images, 2483-2486(2018).

    [13] X YANG, H SUN, X SUN et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network. IEEE Access, 6, 50839-50849(2018).

    [14] X K ZHU, X WANG, Q ZHAO et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios, 2778-2788(2022).

    [15] H M YU, F X XU. A remote sensing image target recognition method based on improved Mask-RCNN model, 436-439(2021).

    [16] T Y LIN, P DOLLAR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).

    [17] [17] QIAOS, CHENL C, YUILLEA.DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution[S].arXiv preprint arXiv: 2020, 2006.02334. 2021: 10213-10224. DOI:10.48550/arXiv.2106.02334

    [18] S ZHANG, G H HE, H B CHEN et al. Scale adaptive proposal network for object detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 16, 864-868(2019).

    [19] G J ZHANG, S J LU, W ZHANG. CAD-Net: A context-aware detection network for objects in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 57, 10015-10024(2019).

    [20] [20] GEZ,LIUS,WANGF,et al.YOLOX: exceeding YOLO series in 2021[S].arXiv preprint arXiv:2021,2107.08430. DOI:10.48550/arXiv.2107.08430

    [21] S LIU, L QI, H QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [22] G X WANG, Z Q LIU, H SUN et al. Yolox-BTFPN: An anchor-free conveyor belt damage detector with a biased feature extraction network. Measurement, 200, 111675(2022).

    [23] M X TAN, R M PANG, Q V LE. EfficientDet: Scalable and efficient object detection, 10778-10787(2020).

    [24] J DAI, H QI, Y XIONG et al. Deformable convolutional networks, 764-773(2017).

    [25] [25] GEVORGYANZ. SIoU Loss: More powerful learning for bounding box regression[S].arXiv Preprint arXiv:2022,2205. 12740. DOI:10.48550/arXiv.2205.12740

    [26] K LI, G WAN, G CHENG et al. Object detection in optical remotesensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [28] [28] WANGC Y, BOCHKOVSKIYA, LIAOH Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[S]. arXiv preprint arXiv:2022,2207.02696. DOI:10.48550/arXiv.2207.02696

    [29] Z F XIAO, Q LIU, G F TANG et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. International Journal of Remote Sensing, 36, 618-644(2015).

    [30] Tingting TIAN, Jun YANG. Remote sensing image object detection based on multi-scale feature fusion network. Laser & Optoelectronics Progress, 59, 427-435(2022).

    [31] Peng WANG, Wenfeng ZHENG, Jin SHI et al. Object detection of remote sensing image based on MFANet and context feature fusion. Journal of Applied Sciences, 40, 131-144(2022).

    [32] Qiaomei MA, Mingjun WANG, Haoran LIANG. License plate location detection algorithm based on improved YOLOv3 in complex scenes. Computer Engineering and Applications, 57, 198-208(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zhaohua HU, Yuhui LI. Object Detection in Remote Sensing Images based on YOLOX-Tiny Biased Feature Fusion Network[J]. Remote Sensing Technology and Application, 2024, 39(3): 590

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 22, 2022

    Accepted: --

    Published Online: Dec. 9, 2024

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.3.0590

    Topics