Remote Sensing Technology and Application, Volume. 39, Issue 3, 590(2024)

Object Detection in Remote Sensing Images based on YOLOX-Tiny Biased Feature Fusion Network

Zhaohua HU and Yuhui LI
Author Affiliations
  • School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing210044,China
  • show less
    Figures & Tables(17)
    YOLOX-Tiny structure diagram
    Improved YOLOX-Tiny structure diagram
    BTFPN structure diagram
    MBTFPN structure diagram
    Deformable convolution schematic diagram
    Schematic diagram of angular loss calculation
    Schematic diagram of distance loss calculation
    Size distribution of various classes in the DIOR datasets
    Partial DIOR datasets images and targets
    Curve of loss function change
    MAP50 radar chart of different models under different categories
    Comparison chart of detection results
    • Table 1. Classes of different objects and the number of

      View table
      View in Article

      Table 1. Classes of different objects and the number of

      TrainValTrainvalTest
      C1344338682705
      C2326327653657
      C35515771 1281 312
      C4336329665704
      C53794958741 302
      C6202204406448
      C7238246484502
      C8279281560565
      C9285299584634
      C10216239455491
      C115364549901 322
      C12328332660814
      C134105109201 099
      C146506521 3021 400
      C15289292851619
      C16391384775839
      C176056301 2351 347
      C18244249493501
      C191 5561 5583 1143 306
      C20404403807809
      Total5 8625 86311 72511 738
    • Table 2. The ablation experiment results of our model on the DIOR dataset

      View table
      View in Article

      Table 2. The ablation experiment results of our model on the DIOR dataset

      方法

      Params

      /M

      P/%R/%APS/%APM /%APL/%AP/%

      FPS

      /f/s

      mAP50 /%
      ①YOLOX-Tiny5.0485.8763.4311.335.362.743.94769.79
      ②YOLOX-Tiny+MBTFPN4.8986.3064.1412.137.063.645.54971.15
      ③YOLOX-Tiny+MBTFPN+ Deformable convolution4.9988.1865.1912.738.969.649.54673.02
      ④YOLOX-Tiny+MBTFPN+ deformable convolution +SIoU4.9988.2465.5912.839.069.849.64673.68
    • Table 3. The Comparative experiment results of different models on the DIOR dataset

      View table
      View in Article

      Table 3. The Comparative experiment results of different models on the DIOR dataset

      MethodNeckSizeParams/MGFLOPs/GFPS/f/smAP50/%
      Faster R-CNNFPN64028.5948.4663.10%
      CenterNet/64032.7109.31956.05%
      YOLOv4-TinySPP+PAN6405.916.27461.01%
      YOLOv5-sPAN6407.116.55066.97%
      YOLOv7-TinySPPCSPC+优化的PAN6406.113.36673.43%
      Our optimized modelMBTFPN6404.915.84673.68%
    • Table 4. Detection performance of different models for targets with different scales on DIOR dataset

      View table
      View in Article

      Table 4. Detection performance of different models for targets with different scales on DIOR dataset

      MethodNeckSizeAPS/%APM /%APL/%
      Faster R-CNNFPN6406.532.357.6
      CenterNet/6405.425.251.4
      YOLOv4-TinySPP+PAN6406.731.350.5
      YOLOv5-sPAN64011.137.462.0
      YOLOv7-TinySPPCSPC+优化的PAN64012.338.970.1
      Our optimized modelMBTFPN64012.839.069.8
    • Table 5. The Comparative experiment results of different models on the RSOD datasets

      View table
      View in Article

      Table 5. The Comparative experiment results of different models on the RSOD datasets

      MethodSizeParams/MFPS/f/saircraftoverpassoiltankplaygroundmAP50/%
      Faster R-CNN64028.5671.90%100%90.90%100%90.70
      CenterNet64032.71970.83%85.37%86.56%100%85.69
      YOLOv4-Tiny6405.97478.28%84.58%83.94%100%86.70
      YOLOv5-s6407.15094.10%80.50%95.10%99.10%92.20
      MDCF2Det640--81.02%100%90.77%100%92.95
      YOLOX-Tiny6405.044795.95%86.93%96.64%100%94.88
      Our optimized model6404.94697.34%91.59%99.55%100%97.12
    Tools

    Get Citation

    Copy Citation Text

    Zhaohua HU, Yuhui LI. Object Detection in Remote Sensing Images based on YOLOX-Tiny Biased Feature Fusion Network[J]. Remote Sensing Technology and Application, 2024, 39(3): 590

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 22, 2022

    Accepted: --

    Published Online: Dec. 9, 2024

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.3.0590

    Topics